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PMML: An Open Standard for Sharing
Models
by Alex Guazzelli, Michael Zeller, Wen-Ching Lin and
Graham Williams

Introduction

The PMML package exports a variety of predic-
tive and descriptive models from R to the Predic-
tive Model Markup Language (Data Mining Group,
2008). PMML is an XML-based language and has
become the de-facto standard to represent not only
predictive and descriptive models, but also data pre-
and post-processing. In so doing, it allows for the
interchange of models among different tools and en-
vironments, mostly avoiding proprietary issues and
incompatibilities.

The PMML package itself (Williams et al., 2009)
was conceived at first as part of Togaware’s data min-
ing toolkit Rattle, the R Analytical Tool To Learn Eas-
ily (Williams, 2009). Although it can easily be ac-
cessed through Rattle’s GUI, it has been separated
from Rattle so that it can also be accessed directly in
R.

In the next section, we describe PMML and its
overall structure. This is followed by a description
of the functionality supported by the PMML pack-
age and how this can be used in R. We then discuss
the importance of working with a valid PMML file
and finish by highlighting some of the debate sur-
rounding the adoption of PMML by the data mining
community at large.

A PMML primer

Developed by the Data Mining Group, an indepen-
dent, vendor-led committee (http://www.dmg.org),
PMML provides an open standard for representing
data mining models. In this way, models can easily
be shared between different applications, avoiding
proprietary issues and incompatibilities. Not only
can PMML represent a wide range of statistical tech-
niques, but it can also be used to represent their input
data as well as the data transformations necessary to
transform these into meaningful features.

PMML has established itself as the lingua franca
for the sharing of predictive analytics solutions be-
tween applications. This enables data mining scien-
tists to use different statistical packages, including R,
to build, visualize, and execute their solutions.

PMML is an XML-based language. Its current 3.2
version was released in 2007. Version 4.0, the next
version, which is to be released in 2009, will expand
the list of available techniques covered by the stan-
dard. For example, it will offer support for time

series, as well as different ways to explain models,
including statistical and graphical measures. Ver-
sion 4.0 also expands on existing PMML elements
and their capabilities to further represent the diverse
world of predictive analytics.

PMML Structure

PMML follows a very intuitive structure to describe
a data mining model. As depicted in Figure 1, it
is composed of many elements which encapsulate
different functionality as it relates to the input data,
model, and outputs.

Figure 1: PMML overall structure described sequen-
tially from top to bottom.

Sequentially, PMML can be described by the fol-
lowing elements:

Header

The header element contains general information
about the PMML document, such as copyright in-
formation for the model, its description, and infor-
mation about the application used to generate the
model such as name and version. It also contains an
attribute for a timestamp which can be used to spec-
ify the date of model creation.
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Data dictionary

The data dictionary element contains definitions for
all the possible fields used by the model. It is in the
data dictionary that a field is defined as continuous,
categorical, or ordinal. Depending on this definition,
the appropriate value ranges are then defined as well
as the data type (such as string or double). The data
dictionary is also used for describing the list of valid,
invalid, and missing values relating to every single
input data.

Data transformations

Transformations allow for the mapping of user data
into a more desirable form to be used by the mining
model. PMML defines several kinds of data transfor-
mation:

• Normalization: Maps values to numbers, the in-
put can be continuous or discrete.

• Discretization: Maps continuous values to dis-
crete values.

• Value mapping: Maps discrete values to discrete
values.

• Functions: Derive a value by applying a func-
tion to one or more parameters.

• Aggregation: Summarizes or collects groups of
values.

The ability to represent data transformations (as well
as outlier and missing value treatment methods) in
conjunction with the parameters that define the mod-
els themselves is a key concept of PMML.

Model

The model element contains the definition of the
data mining model. Models usually have a model
name, function name (classification or regression)
and technique-specific attributes.

The model representation begins with a mining
schema and then continues with the actual represen-
tation of the model:

• Mining Schema: The mining schema (which is
embedded in the model element) lists all fields
used in the model. This can be a subset of the
fields defined in the data dictionary. It contains
specific information about each field, such as
name and usage type. Usage type defines the
way a field is to be used in the model. Typ-
ical values are: active, predicted, and supple-
mentary. Predicted fields are those whose val-
ues are predicted by the model. It is also in the
mining schema that special values are treated.
These involve:

– Outlier Treatment: Defines the outlier treat-
ment to be used. In PMML, outliers can be
treated as missing values, as extreme val-
ues (based on the definition of high and
low values for a particular field), or as is.

– Missing Value Replacement Policy: If this at-
tribute is specified then a missing value is
automatically replaced by the given val-
ues.

– Missing Value Treatment: Indicates how the
missing value replacement was derived
(e.g. as value, mean or median).

• Targets: The targets element allows for the scal-
ing of predicted variables.

• Model Specifics: Once we have the data schema
in place we can specify the details of the actual
model.

A multi-layered feed-forward neural network,
for example, is represented in PMML by its
activation function and number of layers, fol-
lowed by the description of all the network
components, such as connectivity and connec-
tion weights.

A decision tree is represented in PMML, recur-
sively, by the nodes in the tree. For each node,
a test on one variable is recorded and the sub-
nodes then correspond to the result of the test.
Each sub-node contains another test, or the fi-
nal decision.

Besides neural networks and decision trees,
PMML allows for the representation of many
other data mining models, including linear re-
gression, generalised linear models, random
forests and other ensembles, association rules,
cluster models, näive Bayes models, support
vector machines, and more.

PMML also offers many other elements such as
built-in functions, statistics, model composition and
verification, etc.

Exporting PMML from R

The PMML package in R provides a generic pmml
function to generate PMML 3.2 for an object. Using
an S3 generic function, the appropriate method for
the class of the supplied object is dispatched.

An example

A simple example illustrates the steps involved in
generating PMML. We will build a decision tree, us-
ing rpart, to illustrate. With a standard installation
of R with the PMML package installed, the follow-
ing should be easily repeatable.
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First, we load the appropriate packages and
dataset. We will use the well known Iris dataset that
records sepal and petal characteristics for different
varieties of iris.

> library(pmml)
> library(rpart)
> data(iris)

We can build a simple decision tree to classify ex-
amples into iris varieties. We see the resulting struc-
ture of the tree below. The root node test is on the
variable Petal.Length against a value of 2.45. The
“left” branch tests for Petal.Length < 2.45 and deliv-
ers a decision of setosa. The “right” branch splits on a
further variable, Petal.Width, to distinguish between
versicolor and virginica.

> my.rpart <- rpart(Species ~ ., data=iris)
> my.rpart

n= 150

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 150 100 setosa ...
2) Petal.Length< 2.45 50 0 setosa (0.33 ...
3) Petal.Length>=2.45 100 50 versicolor ...

6) Petal.Width< 1.75 54 5 versicolor ...
7) Petal.Width>=1.75 46 1 virginica ...

To convert this model to PMML we simply call
the pmml function. Below we see some of the output.

The exported PMML begins with a header that
contains information about the model. As indicated
above, this will contain general information about
the model, including copyright, the application used
to build the model, and a timestamp. Other informa-
tion might also be included.

> pmml(my.rpart)

<PMML version="3.2" ...
<Header
copyright="Copyright (c) 2009 Togaware"
description="RPart Decision Tree">
<Extension name="timestamp"

value="2009-02-15 06:51:50"
extender="Rattle"/>

<Extension name="description"
value="iris tree"
extender="Rattle"/>

<Application name="Rattle/PMML"
version="1.2.7"/>

</Header>

Next, the data dictionary records information
about the data fields from which the model was built.
Here we see the definition of a categoric and a nu-
meric data field.

<DataDictionary numberOfFields="5">
<DataField name="Species" ...
<Value value="setosa"/>
<Value value="versicolor"/>
<Value value="virginica"/>

<DataField name="Sepal.Length"
optype="continuous"
dataType="double"/>

</DataField>
...

The header and the data dictionary are common
to all PMML, irrespective of the model.

Next we record the details of the model itself. In
this case we have a tree model, and so a ‘TreeModel’
element is defined. Within the tree model we begin
with the mining schema.

<TreeModel modelName="RPart_Model"
functionName="classification"
algorithmName="rpart"
...>

<MiningSchema>
<MiningField name="Species"

usageType="predicted"/>
<MiningField name="Sepal.Length"

usageType="active"/>
...

This is followed by the actual nodes of the tree.
We can see that the first test involves a test on the
Petal.Length. Once again, it is testing the value
against 2.45.

<Node id="1" score="setosa"
recordCount="150" defaultChild="3">

<True/>
<ScoreDistribution value="setosa"
recordCount="50" confidence="0.33"/>

<ScoreDistribution value="versicolor"
recordCount="50" confidence="0.33"/>

<ScoreDistribution value="virginica"
recordCount="50" confidence="0.33"/>

<Node id="2" score="setosa"
recordCount="50">

<CompoundPredicate
booleanOperator="surrogate">

<SimplePredicate field="Petal.Length"
operator="lessThan" value="2.45"/>

...
</Node>
</TreeModel>

</PMML>

We also note that more information is captured
here than displayed with R’s print method for the
rpart object. The rpart object in fact includes infor-
mation about surrogate splits which is also captured
in the PMML representation.

Usually, we will want to save the PMML to a file,
and this can easily be done using the saveXML func-
tion from the XML package (Temple Lang , 2009).
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> saveXML(pmml(my.rpart),
+ file="my_rpart.xml")

Supported Models

Figure 2: PMML Export functionality is available for
several predictive algorithms in R.

Although coverage is constantly being expanded,
PMML exporter functionality is currently available
for the following data mining algorithms:

1. Support Vector Machines — kernlab (Karat-
zoglou et al., 2008): PMML export for SVMs
implementing multi-class and binary classifi-
cation as well as regression for objects of class
ksvm (package kernlab). It also exports trans-
formations for the input variables by following
the scaling scheme used by ksvm for numerical
variables, as well as transformations to create
dummy variables for categorical variables.

For multi-class classification, ksvm uses the
one-against-one approach, in which the appro-
priate class is found by a voting scheme. Given
that PMML 3.2 does not support this approach,
the export functionality comes with an exten-
sion piece to handle such cases. The next ver-
sion of PMML to be released in early 2009 will
be equipped to handle different classification
methods for SVMs, including one-against-one.

The example below shows how to train a sup-
port vector machine to perform binary classifi-
cation using the audit dataset — see Williams
(2009).

> library(kernlab)
> audit <- read.csv(file(
+"http://rattle.togaware.com/audit.csv")
+ )
> myksvm <- ksvm(as.factor(Adjusted) ~ .,
+ data=audit[,c(2:10,13)],
+ kernel = "rbfdot",
+ prob.model=TRUE)
> pmml(myksvm, data=audit)

Note that the PMML package is being invoked
in the example above with two parameters: 1)
the ksvm object which contains the model rep-
resentation; and 2) the data object used to train

the model. The PMML package uses the data
object to be able to retrieve the values for cate-
gorical variables which are used internally by
ksvm to create dummy variables, but are not
part of the resulting ksvm object.

2. Neural Networks — nnet: PMML export for
neural networks implementing multi-class or
binary classification as well as regression mod-
els built with the nnet package, available
through the VR bundle (Venables and Ripley,
2002). Some details that are worth mentioning
are:

• Scaling of input variables: Since nnet does
not automatically implement scaling of
numerical inputs, it needs to be added to
the generated PMML file by hand if one
is planning to use the model to compute
scores/results from raw, unscaled data.

• The PMML exporter uses transformations
to create dummy variables for categorical
inputs. These are expressed in the ‘Neu-
ralInputs’ element of the resulting PMML
file.

• PMML 3.2 does not support the censored
variant of softmax.

• Given that nnet uses a single output node
to represent binary classification, the re-
sulting PMML file contains a discretizer
with a threshold set to 0.5.

3. Classification and Regression Trees — rpart
(Therneau and Atkinson. R port by B. Ripley,
2008): PMML export functionality for decision
trees built with the rpart package is able to ex-
port classification as well as regression trees.
It also exports surrogate predicate information
and missing value strategy (default child strat-
egy).

4. Regression Models — lm and glm from stats:
PMML export for linear regression models for
objects of class "lm" and binary logistic regres-
sion models for objects of class "glm" built with
the binomial family. Note that this function
currently does not support multinomial logis-
tic regression models or any other regression
models built using the VGAM package.

5. Clustering Models — hclust and kmeans from
stats: PMML export functionality for cluster-
ing models for objects of class "hclust" and
"kmeans".

6. Association Rules — arules (Hahsler et al.,
2008): PMML export for association rules built
with the arules package.
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7. Random Forest (and randomSurvivalForest)
— randomForest (Breiman and Cutler. R
port by A. Liaw and M. Wiener, 2009) and ran-
domSurvivalForest (Ishwaran and Kogalur ,
2009): PMML export of a randomSurvivalFor-
est "rsf" object. This function gives the user
the ability to export PMML containing the ge-
ometry of a forest.

PMML validation

Since PMML is an XML-based standard, the speci-
fication comes in the form of an XML Schema. Ze-
mentis (http://www.zementis.com) has built a tool
that can be used to validate any PMML file against
the current and previous PMML schemas. The tool
can also be used to convert older versions of PMML
(2.1, 3.0, 3.1) to version 3.2 (the current version). The
PMML Converter will validate any PMML file and
is currently able to convert the following modeling
elements:

1. Association Rules

2. Neural Networks

3. Decision Trees

4. Regression Models

5. Support Vector Machines

6. Cluster Models

The PMML converter is free to use and can be
accessed directly from the Zementis website or in-
stalled as a gadget in an iGoogle console.

It is very important to validate a PMML file.
Many vendors claim to support PMML but such sup-
port is often not very complete. Also, exported files
do not always conform to the PMML specification.
Therefore, interoperability between tools can be a
challenge at times.

More importantly, strict adherence to the schema
is necessary for the standard to flourish. If this is not
enforced, PMML becomes more of a blueprint than a
standard, which then defeats its purpose as an open
standard supporting interoperability. By validating
a PMML file against the schema, one can make sure
that it can be moved around successfully. The PMML
Converter is able to pinpoint schema violations, em-
powering users and giving commercial tools, as well
as the PMML package available for R, an easy way
to validate their export functionality. The example
below shows part of the data dictionary element for
the iris classification tree discussed previously. This
time, however, the PMML is missing the required
dataType attribute for variable Sepal.Length. The
PMML Converter flags the problem by embedding
an XML comment into the PMML file itself.

<DataDictionary>
<!--PMML Validation Error:
Expected attribute: dataType in
element DataField -->
<DataField name="Sepal.Length"
optype="continuous">

</DataField>
<DataField name="Sepal.Width"
dataType="double"
optype="continuous">

</DataField>
...

Discussion

Although PMML is an open standard for represent-
ing predictive models, the lack of awareness has
made its adoption slow. Its usefulness was also lim-
ited because until recently predictive models were in
general built and deployed using the same data min-
ing tool. But this is now quickly changing with mod-
els built in R, for example, now able to be deployed
in other model engines, including data warehouses
that support PMML.

For those interested in joining an on-going dis-
cussion on PMML, we have created a PMML dis-
cussion group under the AnalyticBridge community
(http://www.analyticbridge.com/group/pmml). In
one of the discussion forums, the issue of the lack
of support for the export of data transformations
into PMML is discussed. Unless the model is built
directly from raw data (usually not the case), the
PMML file that most tools will export is incomplete.
This also extends to R. As we saw in the previ-
ous section, the extent to which data transforma-
tions are exported to PMML in R depends on the
amount of pre-processing carried out by the pack-
age/class used to build the model. However, if any
data massaging is done previous to model building,
this needs to be manually converted to PMML if one
wants that to be part of the resulting file. PMML of-
fers coverage for many commonly used data trans-
formations, including mapping and normalization
as well as several built-in functions for string, date
and time manipulation. Built-in functions also of-
fer several mathematical operations as depicted in
the PMML example below, which implements: maxi-
mum(round(inputVar/1.3)).

<Apply function="max">
<Apply function="round">
<Apply function="/">
<FieldRef field="inputVar"/>
<Constant>1.3</Constant>

</Apply>
</Apply>

</Apply>
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Integrated tools that export PMML should allow
not only for the exporting of models, but also data
transformations. One question we pose in our dis-
cussion forum is how to implement this in R.

More recently, KNIME has implemented exten-
sive support for PMML. KNIME is an open-source
framework that allows users to visually create data
flows (http://www.knime.org). It implements plug-
ins that allow R-scripts to be run inside its Eclipse-
based interface. KNIME can import and export
PMML for some of its predictive modules. In do-
ing so, it allows for models built in R to be loaded
in KNIME for data flow visualization. Given that it
exports PMML as well, it could potentially be used
to integrate data pre- and post-processing into a sin-
gle PMML file which would then contain the entire
data and model processing steps.

PMML offers a way for models to be exported
out of R and deployed in a production environ-
ment, quickly and effectively. Along these lines, an
interesting development we are involved in is the
ADAPA scoring engine (Guazzelli et al., 2009), pro-
duced by Zementis. This PMML consumer is able
to upload PMML models over the Internet and then
execute/score them with any size dataset in batch-
mode or real-time. This is implemented as a service
through the Amazon Compute Cloud. Thus, models
developed in R can be put to work in matter of min-
utes, via PMML, and accessed in real-time through
web-service calls from anywhere in the world while
leveraging a highly scalable and cost-effective cloud
computing infrastructure.
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