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Rattle: A Data Mining GUI for R
by Graham J Williams

Abstract: Data mining delivers insights, pat-
terns, and descriptive and predictive models
from the large amounts of data available today
in many organisations. The data miner draws
heavily on methodologies, techniques and al-
gorithms from statistics, machine learning, and
computer science. R increasingly provides a
powerful platform for data mining. However,
scripting and programming is sometimes a chal-
lenge for data analysts moving into data mining.
The Rattle package provides a graphical user in-
terface specifically for data mining using R. It
also provides a stepping stone toward using R
as a programming language for data analysis.

Introduction

Data mining combines concepts, tools, and algo-
rithms from machine learning and statistics for the
analysis of very large datasets, so as to gain insights,
understanding, and actionable knowledge.

Closed source data mining products have facili-
tated the uptake of data mining in many organisa-
tions. These products offer off-the-shelf ease-of-use
that makes them attractive to the many new data
miners in a market place desperately seeking high
levels of analytical skills.

R is ideally suited to the many challenging tasks
associated with data mining. R offers a breadth and
depth in statistical computing beyond what is avail-
able in commercial closed source products. Yet R re-
mains, primarily, a programming language for the
highly skilled statistician, and out of the reach of
many.

Rattle (the R Analytical Tool To Learn Easily) is
a graphical data mining application written in and
providing a pathway into R (Williams, 2009b). It
has been developed specifically to ease the transi-
tion from basic data mining, as necessarily offered
by GUIs, to sophisticated data analyses using a pow-
erful statistical language.

Rattle brings together a multitude of R packages
that are essential for the data miner but often not
easy for the novice to use. An understanding of R
is not required in order to get started with Rattle—
this will gradually grow as we add sophistication to
our data mining. Rattle’s user interface provides an
entree into the power of R as a data mining tool.

Rattle is used for teaching data mining at numer-
ous universities and is in daily use by consultants
and data mining teams world wide. It is also avail-
able as a product within Information Builders’ Web-
Focus business intelligence suite as RStat.

Rattle is one of several open source data mining
tools (Chen et al., 2007). Many of these tools are
also directly available within R (and hence Rattle)
through packages like RWeka (Hornik et al., 2009)
and arules (Hahsler et al., 2005).

Implementation

Rattle uses the Gnome graphical user interface as
provided through the RGtk2 package (Lawrence and
Lang, 2006). It runs under various operating sys-
tems, including GNU/Linux, Macintosh OS/X, and
MS/Windows.

The GUI itself has been developed using the
Glade interactive interface builder. This produces a
programming-language-independent XML descrip-
tion of the layout of the widgets that make up the
user interface. The XML file is then simply loaded
by an application and the GUI is rendered!

Glade allows the developer to freely choose to im-
plement the functionality (i.e., the widget callbacks)
in a programming language of choice, and for Rattle
that is R. It is interesting to note that the first imple-
mentation of Rattle actually used Python for imple-
menting the callbacks and R for the statistics, using
rpy. The release of RGtk2 allowed the interface el-
ements of Rattle to be written directly in R so that
Rattle is a fully R-based application.

Underneath, Rattle relies upon an extensive col-
lection of R packages. This is a testament to the
power of R—it delivers a breadth and depth of sta-
tistical analysis that is hard to find anywhere else.
Some of the packages underlying Rattle include ada,
arules, doBy, ellipse, fBasics, fpc, gplots, Hmisc,
kernlab, mice, network, party, playwith, pmml,
randomForest, reshape, rggobi, RGtk2, ROCR,
RODBC, and rpart. These packages are all avail-
able from the Comprehensive R Archive Network
(CRAN). If a package is not installed but we ask
through Rattle for some functionality provided by
that package, Rattle will popup a message indicating
that the package needs to be installed.

Rattle is not only an interface though. Addi-
tional functionality that is desired by a data miner
has been written for use in Rattle, and is available
from the rattle package without using the Rattle
GUI. The pmml package (Guazzelli et al., 2009) is
an offshoot of the development of Rattle and sup-
ports the export of models from Rattle using the open
standard XML based PMML, or Predictive Model
Markup Language (Data Mining Group, 2008). Mod-
els exported from R in this way can be imported
into tools like the ADAPA decision engine running
on cloud computers, Teradata’s Warehouse Miner
for deployment as SQL over a very large database,
and Information Builder’s WebFocus which handles
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data sourcing, preparation, and reporting, and is able
to transform Rattle generated PMML models into C
code to run on over 30 platforms.

Installation

The Gnome and Glade libraries need to be installed
(separately to R) to run Rattle. On GNU/Linux
and Mac/OSX this is usually a simple package
installation. Specifically, for Debian or Ubuntu
we install packages like gnome and glade-3. For
MS/Windows the self-installing libraries can be ob-
tained from http://downloads.sourceforge.net/
gladewin32. Full instructions are available from
http://rattle.togaware.com.

After installing the required libraries be sure to
restart the R console to ensure R can find the new li-
braries.

Assuming R is installed we can then install the
RGtk2 and rattle packages with:

> install.packages("RGtk2")
> install.packages("rattle")

Once installed we simply start Rattle by loading
the rattle package and then evaluating the rattle()
function:

> library(rattle)

Rattle: Graphical interface for data mining in R.
Version 2.5.0 Copyright (C) 2006-2009 Togaware.
Type 'rattle()' to shake, rattle, & roll your data.

> rattle()

Rattle will pop up a window similar to that in Fig-
ure 1.

The latest development version of Rattle is al-
ways available from Togaware:

> install.packages("rattle",
+ repos = "http://rattle.togaware.com")

Figure 1: Rattle’s introductory screen.

Data Mining

Rattle specifically uses a simple tab-based concept
for the user interface (Figure 1), capturing a work
flow through the data mining process with a tab for
each stage. A typical work flow progresses from the
left most tab (the Data tab) to the right most tab (the
Log tab). For any tab the idea is for the user to con-
figure the available options and then to click the Ex-
ecute button (or F2) to perform the appropriate task.
The status bar at the base of the window will indicate
when the action is complete.

We can illustrate a very simple, if unrealistic, run
through Rattle to build a data mining model with just
four mouse clicks. Start up R, load the rattle package,
and issue the rattle() command. Then:

1. Click on the Execute button;

2. Click on Yes within the resulting popup;

3. Click on the Model tab;

4. Click on the Execute button.

Now we have a decision tree built from a sample
classification dataset.

With only one or two more clicks, alternative
models can be built. A few more clicks will have
an evaluation chart displayed to compare the perfor-
mance of the models constructed. Then a click or two
more will have the models applied to score a new
dataset.

Of course, there is much more to modelling and
data mining than simply building a tree model. This
simple example provides a flavour of the interface
provided by Rattle.

The common work flow for a data mining project
can be summarised as:

1. Load a Dataset and select variables;

2. Explore the data to understand distributions;

3. Test distributions;

4. Transform the data to suit the modelling;

5. Build Models;

6. Evaluate models and score datasets;

7. Review the Log of the data mining process.

The underlying R code, constructed and executed
by Rattle, is recorded in the Log tab, together with
instructive comments. This allows the user to review
the actual R commands. The R code snippets can also
be copied as text (or Exported to file) from the Log
tab and pasted into the R console and executed. This
allows Rattle to be deployed for basic tasks, yet still
access the full power of R as needed (e.g., to fine-tune
modelling options that are not exposed in the inter-
face).

The use of Sweave (Leisch, 2002) to allow LATEX
markup as the format of the contents of the log is
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experimental but will introduce the concept of liter-
ate data mining. The data miner will document their
activity, as they proceed through Rattle, by editing
the log which is also automatically populated as the
modelling proceeds. Simple and automatic process-
ing can then turn the log into a formatted report that
also embodies the actual code, which may also be run
so as to replicate the activity.

Using the related Tangle processor allows the log
to be exported as an R script file, to record the actions
taken. The script can then be independently run at a
later time (or pasted into the R console).

Repeatability and reproducibility are important
in both scientific research and commercial practice.

Data

If no dataset has been supplied to Rattle and we click
the Execute button (e.g., startup Rattle and immedi-
ately click Execute) we are given the option to load
one of Rattle’s sample datasets from a CSV file.

Rattle can load data from various sources. It di-
rectly supports CSV (comma separated data), TXT
(tab separated data), ARFF (a common data min-
ing dataset format (Witten and Frank, 2005) which
adds type information to a CSV file), and ODBC con-
nections (allowing connection to many data sources
including MySQL, SQLite, Postgress, MS/Excel,
MS/Access, SQL Server, Oracle, IBM DB2, Netezza,
and Teradata). R data frames attached to the current
R session, and datasets available from the packages
installed in the R libraries, are also available through
the Rattle interface.

To explore the use of Rattle as a data mining tool
we consider the sample audit dataset provided by
the rattle package. The data is artificial, but reflects a
real world dataset used for reviewing the outcomes
of historic financial audits. Picture, for example, a
revenue authority collecting taxes based on informa-
tion supplied by the tax payer. Thousands of ran-
dom audits might be performed and the outcomes
indicate whether an adjustment to the supplied in-
formation was required, resulting in a change to the
taxpayer’s liability.

The audit dataset is supplied as both an R dataset
and as a CSV file. The dataset consists of 2,000 fic-
tional tax payers who have been audited for tax com-
pliance. For each case an outcome after the audit is
recorded (whether the financial claims had to be ad-
justed or not). The actual dollar amount of adjust-
ment that resulted is also recorded (noting that ad-
justments can go in either direction).

The audit dataset contains 13 variables (or
columns), with the first being a unique client iden-
tifier.

When loading data into Rattle certain special pre-
fixes to variable names can be used to identify de-
fault variable roles. For example, if the variable

name starts with ‘ID_’ then the variable is marked
as having a role as an identifier. Other prefixes in-
clude ‘IGNORE_’, ‘RISK_’, ‘IMP_’ (for imputed) and
‘TARGET_’. Examples from the audit data include
IGNORE_Accounts and TARGET_Adjusted.

The CSV option of the Data tab provides the sim-
plest approach to loading data into Rattle. If the
Data tab is Executed with no CSV file name spec-
ified then Rattle offers the option to load a sample
dataset. Clicking on the Filename box will then list
other available sample datasets, including ‘audit.csv’.

Once Rattle loads a dataset the text window will
contain the list of available variables and their de-
fault roles (as in Figure 2).

Figure 2: Rattle’s variable roles screen.

By default, most variables have a role of Input for
modelling. We may want to identify one variable as
the Target variable, and optionally identify another
variable as a Risk variable (which is a measure of the
size of the “targets”). Other roles include Ident and
Ignore.

Rattle uses simple heuristics to guess at roles, par-
ticularly for the target and ignored variables. For, ex-
ample, any numeric variable that has a unique value
for each observation is automatically identified as an
identifier.

Rattle will, by default, partition the dataset into
a training and a test dataset. This kind of sampling
is useful for exploratory purposes when the data is
quite large. Its primary purpose, though, is to select
a 70% sample for training of models, providing a 30%
set for testing.

Explore

Exploratory data analysis is important in under-
standing our data. The Explore tab provides numer-
ous numeric and graphic tools for exploring data.
Once again, there is a considerable reliance on many
other R packages.
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Summary

The Summary option uses R’s summary command
to provide a basic univariate summary. This is
augmented with the contents and describe com-
mands from the Hmisc package (Harrell, 2009). Ex-
tended summaries include additional statistics pro-
vided by the fBasics package (Wuertz, 2009), kur-
tosis and skewness, as well as a summary of miss-
ing values using the missing value functionality
from the mice package (van Buuren and Groothuis-
Oudshoorn, 2009).

Distributions

The Distributions option provides access to numer-
ous plot types. It is always a good idea to review the
distributions of the values of each of the variables
before we consider data mining. While the above
summaries help, the visual explorations can often be
quite revealing (Cook and Swayne, 2007).

A vast array of tools are available within R for
presenting data visually and the topic is covered in
detail in many books including Cleveland (1993).
Rattle provides a simple interface to the underlying
functionality in R for drawing some common plots.
The current implementation primarily relies on the
base graphics provided by R, but may migrate to the
more sophisticated lattice (Sarkar, 2008) or ggplot2
(Wickham, 2009).

Some of the canned plots are illustrated in Fig-
ure 3. Clockwise we can see a box plot, a histogram,
a mosaic plot, and a Benford’s Law plot. Having
identified a target variable (in the Data tab) the plots
include the distributions for each subset of observa-
tions associated with each value of the target vari-
able, wherever this makes sense to do so.

GGobi and Latticist

Rattle provides access to two sophisticated tools for
interactive graphical data analysis: GGobi and Latti-
cist.

The GGobi (Cook and Swayne, 2007) visualisa-
tion tool is accessed through the rggobi package
(Wickham et al., 2008). GGobi will need to be in-
stalled on the system separately, and runs under
GNU/Linux, OS/X, and MS/Windows. It is avail-
able for download from http://www.ggobi.org/.

Ggobi is useful for exploring high-dimensional
data through highly dynamic and interactive graph-
ics, especially with tours, scatterplots, barcharts and
parallel coordinate plots. The plots are interactive
and linked with brushing and identification. The
available functionality is extensive, and supports
panning, zooming and rotations.

Figure 3: Exploring variable distributions.

Figure 4 displays a scatterplot of Age versus In-
come (left) and a scatterplot matrix across four vari-
ables at the one time (right). Brushing is used to dis-
tinguish the class of each observation.

Figure 4: Example of GGobi using rggobi to connect.

A more recent addition to the R suite of pack-
ages are the latticist and playwith packages (An-
drews, 2008) which employ lattice graphics within a
graphical interface to interactively explore data. The
tool supports various plots, data selection and sub-
setting, and support for brushing and annotations.
Figure 5 illustrates the default display when initiated
from Rattle.

Test

The Test tab provides access to a number of para-
metric and non-parametric statistical tests of distri-
butions. This more recent addition to Rattle contin-
ues to receive attention (and hence will change over
time). In the context of data mining often applied
to the binary classification problem, the current tests
are primarily two sample statistical tests.
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Figure 5: Latticist displaying the audit data.

Tests of data distribution include the
Kolomogorov-Smirnov and Wilcoxon Signed Rank
tests. For testing the location of the average the T-
test and Wilcoxon Rank-Sum tests are provided. The
F-test and Pearson’s correlation are also available.

Transform

Cleaning data and creating new features (derived
variables) occupies much time for a data miner.
There are many approaches to data cleaning, and
a programming language like R supports them all.
Rattle’s Transform tab (Figure 6) provides a number
of the common options for transforming, including
rescaling, skewness reduction, imputing missing val-
ues, turning numeric variables into categorical vari-
ables, and vice versa, dealing with outliers, and re-
moving variables or observations with missing val-
ues. We review a number of the transforms here.

Rescale

The Rescale option offers a number of rescaling op-
erations, using the scale command from base and
the rescaler command from the reshape package
(Wickham, 2007). Rescalings include recentering
and scaling around zero (Recenter), scaling to 0–1
(Scale [0,1]), converting to a rank ordering (Rank),
robust rescaling around zero using the median (-
Median/MAD), and rescaling based on groups in the
data.

For any transformation the original variable is not
modified. A new variable is created with a prefix
added to the variable’s name to indicate the trans-
formation. The prefixes include ‘RRC_’, ‘R01_’, ‘RRK_’,
‘RMD_’, and ‘RBG_’, respectively.

The effect of the rescaling can be examined using
the Explore tab (Figure 7). Notice that Rattle overlays
bar charts with a density plot, by default.

Figure 6: Transform options.

Figure 7: Four rescaled versions of Income.

Impute

Imputation of missing values is a tricky topic and
should only be done with a good understanding of
the data. Often, observational data (as distinct from
experimental data) will contain missing values, and
this can cause a problem for data mining algorithms.
For example, the Forest option (using randomFor-
est) silently removes any observation with any miss-
ing value! For datasets with a very large number of
variables, and a reasonable number of missing val-
ues, this may well result in a small, unrepresentative
dataset, or even no data at all!

There are many types of imputations possible,
only some of which are directly available in Rattle.
Further, Rattle does not (yet) support multiple impu-
tation. The pattern of missing values can be viewed
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using the Show Missing check button of the Sum-
mary option of the Explore tab.

The simplest, and least recommended, of impu-
tations involves replacing all missing values for a
variable with a single value. This makes most sense
when we know that the missing values actually indi-
cate that the value is “0” rather than unknown. For
example, in a taxation context, if a tax payer does
not provide a value for a specific type of deduction,
then we might assume that they intend it to be zero.
Similarly, if the number of children in a family is not
recorded, it could be a reasonable assumption that it
is zero (but it might equally well mean that the num-
ber is just unknown).

A common, if generally unsatisfactory, choice for
missing values that are known not to be zero is to use
some “central” value of the variable. This is often the
mean, median, or mode. We might choose to use the
mean, for example, if the variable is otherwise nor-
mally distributed (and in particular has little skew-
ness). If the data does exhibit some skewness though
(e.g., there are a small number of very large values)
then the median might be a better choice.

Be wary of any imputation performed. It is, af-
ter all, inventing new data! Future development of
Rattle may provide more support with model based
imputation through packages like Amelia (Honaker
et al., 2009).

Remap

The Remap option provides numerous re-mapping
operations, including binning, log transforms, ra-
tios, and mapping categorical variables into indica-
tor variables for the situation where a model builder
requires numeric data. Rattle provides options to
use Quantile binning, KMeans binning, and Equal
Width binning. For each option the default num-
ber of bins is 4 but we can change this to suit our
needs. The generated variables are prefixed with ei-
ther ‘BQn_’, ‘BKn_’, and ‘BEn_’ respectively, with ‘n’ re-
placed with the number of bins. Thus, we can create
multiple binnings for any variable.

There are also options to Join Categorics—a con-
venient way to stratify the dataset, based on multiple
categoric variables. A Log transform is also avail-
able.

Model

Data mining algorithms are often described as being
either descriptive or predictive. Rattle currently sup-
ports the two common descriptive or unsupervised
approaches to model building: cluster analysis and
association analysis. A variety of predictive model
builders are supported: decision trees, boosting, ran-
dom forests, support vector machines, generalised
linear models, and neural networks.

Predictive modelling, and generally the task of
classification, is at the heart of data mining. Rat-
tle originally focused on the common data mining
task of binary (or two class) classification but now
supports multinomial classification and regression,
as well as descriptive models.

Rattle provides a straight-forward interface to
a collection of descriptive and predictive model
builders available in R. For each, a simple collection
of tuning parameters is exposed through the graph-
ical interface. Where possible, Rattle attempts to
present good default values (often the same defaults
as selected by the author of the respective package)
to allow the user to simply build a model with no or
little tuning. This may not always be the right ap-
proach, but is certainly a reasonable place to start.

We will review modelling within Rattle through
decision trees and random forests.

Decision Trees

One of the classic machine learning techniques,
widely deployed in data mining, is decision tree in-
duction Quinlan (1986). Using a simple algorithm
and a simple tree structure to represent the model,
the approach has proven to be very effective. Un-
derneath, the rpart (Therneau et al., 2009) and party
(Hothorn et al., 2006) packages are called upon to do
the work. Figure 8 shows the Model tab with the re-
sults of building a decision tree displayed textually
(the usual output from the summary command for an
"rpart" object).

Figure 8: Building a decision tree.

Rattle adds value to the basic rpart functionality
with additional displays of the decision tree, as in
Figure 9, and the conversion of the decision tree into
a list of rules (using the Draw and Rules buttons re-
spectively).

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859

http://cran.r-project.org/package=Amelia
http://cran.r-project.org/package=rpart
http://cran.r-project.org/package=party
http://cran.r-project.org/package=rpart


CONTRIBUTED RESEARCH ARTICLES 51

Figure 9: Rattle’s display of a decision tree.

Ensemble

The ensemble approach has gained a lot of inter-
est lately. Early work (Williams, 1988) experimented
with the idea of combining a collection of decision
trees. The results there indicated the benefit of build-
ing multiple trees and combining them into a single
model, as an ensemble.

Recent developments continue to demonstrate
the effectiveness of ensembles in data mining
through the use of the boosting and random forest
algorithms. Both are supported in rattle and we con-
sider just the random forest here.

Random Forests

A random forest (Breiman, 2001) develops an en-
semble of decision trees. Random forests are often
used when we have very large training datasets and
a very large number of input variables (hundreds or
even thousands of input variables). A random forest
model is typically made up of tens or hundreds of de-
cision trees, each built using a random sample of the
dataset, and whilst building any one tree, a random
sample of the variables is considered at each node.

The random sampling of both the data and the
variables ensures that even building 500 decision
trees can be efficient. It also reputably delivers con-
siderable robustness to noise, outliers, and over-
fitting, when compared to a single tree classifier.

Rattle uses the randomForest package (Liaw and
Weiner, 2002) to build a forest of trees. This is an in-
terface to the original random forest code from the
original developers of the technique. Consequently
though, the resulting trees have a different structure
to standard "rpart" trees, and so some of the same
tree visualisations are not readily available. Rattle
can list all of the rules generated for a random forest,
if required. For complex problems this can be a very
long list indeed (thousands of rules).

The Forest option can also display a plot of rela-
tive variable importance. This provides insight into

which variables play the most important role in pre-
dicting the class outputs. The Importance button
will display two plots showing alternative measures
of the relative importance of the variables in our
dataset in relation to predicting the class.

Building All Models and Tuning

Empirically, the different model builders often pro-
duce models that perform similarly, in terms of mis-
classification rates. Thus, it is quite instructive to use
all of the model builders over the same dataset. The
All option will build one model for each of the dif-
ferent model builders.

We can review the performance of each of the
models built and choose that which best suits our
needs. In choosing a single model we may not neces-
sarily choose the most accurate model. Other factors
can come into play. For example, if the simple deci-
sion tree is almost as accurate as the 500 trees in the
random forest ensemble, then we may not want to
step up to the complexity of the random forest for
deployment.

An effective alternative, where explanations are
not required, and accuracy is desired, is to build a
model of each type and to then build an ensemble
that is a linear combination of these models.

Evaluate

Rattle provides a standard collection of tools for eval-
uating and comparing the performance of models.
This includes the error matrix (or confusion table),
lift charts, ROC curves, and Cost Curves, using, for
example, the ROCR package (Sing et al., 2009). Fig-
ure 10 shows the options.

Figure 10: Options for Evaluation.

A cumulative variation of the ROC curve is im-
plemented in Rattle as Risk charts (Figure 11). Risk
charts are particularly suited to binary classification
tasks, which are common in data mining. The aim is
to efficiently display an easily understood measure
of the performance of the model with respect to re-
sources available. Such charts have been found to be
more readily explainable to decision-making execu-
tives.

A risk chart is particularly useful in the context of
the audit dataset, and for risk analysis tasks in gen-
eral. The audit dataset has a two class target variable
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as well as a so-called risk variable, which is a mea-
sure of the size of the risk associated with each ob-
servation. Observations that have no adjustment fol-
lowing an audit (i.e., clients who have supplied the
correct information) will of course have a risk of zero
associated with them. Observations that do have an
adjustment will usually have a risk associated with
them, and for convenience we simply identify the
value of the adjustment as the magnitude of the risk.

Rattle uses the idea of a risk chart to evaluate the
performance of a model in the context of risk analy-
sis.

Figure 11: A simple cumulative risk chart.

A risk chart plots performance against caseload.
Suppose we had a population of just 100 observa-
tions (or audit cases). The case load is the percentage
of these cases that we will actually ask our auditors
to process. The remaining cases will not be consid-
ered any further, expecting them to be low risk, and
hence, with limited resources, not requiring any ac-
tion.

The decision as to what percentage of cases are
actioned corresponds to the x-axis of the risk chart—
the caseload. A 100% caseload indicates that we will
action all audit cases. A 25% caseload indicates that
we will action just one quarter of all cases.

The performance is the percentage of the total
number of cases that required an adjustment (or the
total risk—both are plotted if a risk variable is identi-
fied) that might be covered in the population that we
action.

The risk chart allows the trade-off between re-
sources and risk to be visualised.

Model Deployment

Once we have decided upon a model that repre-
sents acceptable improvement to our business pro-
cesses we are faced with deployment. Deployment
can range from running the model ad hoc, to a fully
automated and carefully governed deployment en-
vironment. We discuss some of the issues here and
explore how Rattle supports deployment.

Scripting R

The simplest approach to deployment is to apply the
model to a new dataset. This is often referred to as
scoring . In the context of R this is nothing more than
using the predict function.

Rattle’s evaluation tab supports scoring with the
Score option. There are further options to score the
training dataset, the test dataset, or data loaded from
a CSV file (which must contain the exact same vari-
ables). Any number of models can be selected, and
the results are written to a CSV file.

Scoring is often performed some time after the
model is built. In this case the model needs to be
saved for later use. The concept of a Rattle project
is useful in such a circumstance. The current state
of Rattle (including the actual data and models built
during a session) can be saved to a project, and later
loaded into a new instance of Rattle (running on the
same host or even a different host and operating sys-
tem). A new dataset can then be scored using the
saved model.

Underneath, saving/loading a Rattle project re-
quires no more than using the save and load com-
mands of R to create a binary representation of the R
objects, and saving them to file. A Rattle project can
get quite large, particularly with large datasets.

Larger files take longer to load, and for deploy-
ing a model it is often not necessary to keep the orig-
inal data. So as we get serious about deployment we
might save just the model we wish to deploy. This is
done using the save function and knowing a little bit
about the internals of Rattle (but no more than what
is exposed through the Log tab).

The approach, saving a randomForest model,
might be:

> myrf <- crs$rf
> save(myrf, file = "model01_090501.RData")

We can then load the model at a later time and ap-
ply the model (using a script based on the commands
shown in the Rattle Log tab) to a new dataset:

> library(randomForest)
> (load("model01_090501.RData"))

[1] "myrf"

> dataset <- read.csv("cases_090601.csv")
> pr <- predict(myrf, dataset,
+ type = "prob")[, 2]
> write.csv(cbind(dataset,
+ pr), file = "scores_090601.csv",
+ row.names = FALSE)
> head(cbind(Actual = dataset$TARGET_Adjusted,
+ Predicted = pr))

Actual Predicted
1 0 0.022
2 0 0.034
3 0 0.002
4 1 0.802
5 1 0.782
6 0 0.158
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As an aside, we can see the random forest model
is doing okay on these few observations.

In practise (e.g., in the Australian Taxation Of-
fice) once model deployment has been approved the
model is deployed into a secure environment. It is
scheduled regularly to be applied to new data us-
ing a script that is very similar to that above (using
the littler package for GNU/Linux). The data is ob-
tained from a data warehouse and the results pop-
ulate a data warehouse table which is then used to
automatically generate work items for auditors to ac-
tion.

Export to PMML

An alternative approach to deployment is to export
the model so that it can be imported into other soft-
ware for prediction on new data.

We have experimented with exporting random
forests to C++ code. This has been demonstrated
running over millions of rows of new data in a data
warehouse in seconds.

Exporting to a variety of different languages,
such as C++, is not an efficient approach to exporting
models. Instead, exporting to a standard represen-
tation, which other software can also export, makes
more sense. This standard representation can then be
exported to a variety of other languages.

The Predictive Model Markup Language (Data
Mining Group, 2008) provides such a standard lan-
guage for representing data mining models. PMML
is an XML based standard that is supported, to some
extent, by the major commercial data mining ven-
dors and many open source data mining tools.

The pmml package for R was separated from
the rattle package to allow its independent devel-
opment with contributions from a broader commu-
nity. PMML models generated by Rattle, using the
pmml package, can be imported into a number of
other products, including Teradata Warehouse Miner
(which converts models to SQL for execution), Infor-
mation Builders’ WebFocus (which converts models
to C code for execution on over 30 platforms), and
Zementis’ ADAPA tool for online execution.

The Export button (whilst displaying a model
within the Model tab) will export a model as PMML.

Log

A GUI is not as complete and flexible as a full pro-
gramming language. Rattle is sufficient for many
data miners, providing a basic point-and-click envi-
ronment for quick and consistent data mining, gain-
ing much from the breadth and depth of R. However,
a professional data miner will soon find the need to
go beyond the assumptions embodied in Rattle. Rat-
tle supports this through the Log tab.

As mentioned above, a log of the R commands
that Rattle constructs are exposed through the Log
tab. The intention is that the R commands be avail-
able for copying into the R console so that where Rat-
tle only exposes a limited number of options, further
options can be tuned via the R console.

The Log tab captures the commands for later ex-
ecution and is also educational. Informative com-
ments are included to describe the steps involved.
The intention is that it provide a tutorial introduction
to using R from the command line, where we obtain
a lot more power.

The text that appears at the top of the Log tab is
shown in Figure 12. Commentary text is preceded
with R’s comment character (the #), with R com-
mands in between.

Figure 12: Rattle Log.

The whole log can be exported to a script file
(with a ‘.R’ filename extension) and then loaded into
R or an R script editor (like Emacs/ESS or Tinn-R)
to repeat the exact steps of the Rattle interactions. In
general, we will want to review the code and fine-
tune it to suit our purposes. After exporting the Log
tab into a file, with a filename like ‘myrf01.R’, we can
have the file execute as a script in R with:

> source("myrf01.R")

Help

The Help menu provides access to brief descriptions
of the functionality of Rattle, structured to reflect the
user interface. Many of the help messages then pro-
vide direct access to the underlying documentation
for the various packages involved.

Future

Rattle continues to undergo development, extending
in directions dictated by its actual use in data min-
ing projects, and from suggestions and code offered
by its user population. Here we mention some of the
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experimental developments that may appear in Rat-
tle over time.

A number of newer R packages provide capabil-
ities that can enhance Rattle significantly. The party
package and associated efforts to unify the represen-
tation of decision tree models across R is an excit-
ing development. The caret package offers a unified
interface to running a multitude of model builders,
and significant support for tuning models over vari-
ous parameter settings. This latter capability is some-
thing that has been experimented with in Rattle, but
not yet well developed.

A text mining capability is in the pipeline. Cur-
rent versions of Rattle can load a corpus of docu-
ments, transform them into feature space, and then
have available all of Rattle’s capabilities. The loading
of a corpus and its transformation into feature space
relies on the tm package (Feinerer, 2008).

Time series analysis is not directly supported in
Rattle. Such a capability will incorporate the abil-
ity to analyse web log histories and observations of
many entities over time.

Spatial data analysis is another area of consider-
able interest, often at the pre-processing stage of data
mining. The extensive work completed for spatial
data analysis with R (Bivand et al., 2008) may pro-
vide the basis for extending Rattle in this direction.

Further focus on missing value imputation is
likely, with the introduction of more sound ap-
proaches, including k-nearest neighbours and mul-
tiple imputation.

Initial support for automated report generation
using the odfWeave package is included in Rattle
(through the Report button). Standard report tem-
plates are under development for each of the tabs.
For the Data tab, for example, the report provides
plots and tables showing distributions and basic
statistics.

The Rattle code will remain open source and oth-
ers are welcome to contribute. The source code is
hosted by Google Code (http://code.google.com/
p/rattle/). The Rattle Users mailing list (http:
//groups.google.com/group/rattle-users) is also
hosted by Google. An open source reference book
is also available (Williams, 2009a).
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