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Abstract.
There are many methods for finding association rules in very large data.
However it is well known that most general association rule discov-
ery methods find too many rules, which include a lot of uninteresting
rules. Furthermore, the performances of many such algorithms deterio-
rate when the minimum support is low. They fail to find many interesting
rules even when support is low, particularly in the case of significantly
unbalanced classes. In this paper we present an algorithm which finds
association rules based on a set of new interestingness criteria. The algo-
rithm is applied to a real-world health data set and successfully identifies
groups of patients with high risk of adverse reaction to certain drugs.
A statistically guided method of selecting appropriate features has also
been developed. Initial results have shown that the proposed algorithm
can find interesting patterns from data sets with unbalanced class dis-
tributions without performance loss.

Keywords: knowledge discovery and data mining, association rules,
record linkage, administrative data, adverse drug reaction.

1 Introduction

The aim of association rule mining is to detect interesting associations between
items in a database. It was initially proposed in the context of market basket
analysis in transaction databases, and has been extended to solve many other
problems such as the classification problem. Association rules for the purpose of
classification are often referred to as predictive association rules. Usually, pre-
dictive association rules are based on relational databases and the consequences
of rules are a pre-specified column, called the class attribute.

One of the problems with conventional algorithms for mining predictive asso-
ciation rules is that the number of association rules found is too large to handle,



even after smart pruning. A new algorithm, which mines only the optimal class
association rule set, has been developed by one of the authors (Li et al. 2002) to
solve this problem.

A second problem with general predictive association rule algorithms is that
many interesting association rules are missed even if the minimum support is
set very low. This is particularly a problem when a dataset has very unbalanced
class distributions, as is typically the case in many real world datasets.

This paper addresses the problem of finding interesting predictive associa-
tion rules in datasets with unbalanced class distributions. We propose two new
interestingness measures for the optimal association rule algorithm developed
earlier and use them to find all interesting association rules in a health dataset
containing classes which are very small compared to the population.

In collaboration with the Commonwealth Department of Health and Ageing
and Queensland Health, CSIRO Data Mining has created a unique cleaned and
linked administrative health dataset bringing together State hospital morbidity
data and Commonwealth Medicare Benefits Scheme (MBS) and Pharmaceutical
Benefits Scheme (PBS) data. The Queensland Linked Data Set (QLDS) links de-
identified, administrative, unit-level data, allowing de-identified patients to be
tracked through episodes of care as evidenced by their MBS, PBS and Hospital
records (Williams et al. 2002). The availability of population-based administra-
tive health data set, such as QLDS, offers a unique opportunity to detect common
and rare adverse reactions early. This also presents challenges in developing new
methods, which detect adverse drug reactions directly from such administrative
data since conventional methods for detecting adverse drug reactions work only
on data from spontaneous reporting systems, or carefully designed case-control
studies (Bate et al. 1998, DuMouchel 1999, Ottervanger et al. 1998).

This paper presents an association algorithm which uses QLDS to identify
groups with high risk of adverse drug reaction. Section 2 describes an algorithm
for mining interesting class association rule sets. Section 3 presents a method
of feature selection based on statistical analysis. In Section 4 we give a brief
description of QLDS and the features selected. Results from mining the optimal
class association rule set are then presented in Section 5. Section 6 concludes the
paper with a summary of contributions and future work.

2 Interesting Association Rule Discovery

Association rule mining finds interesting patterns and associations among pat-
terns. It is a major research topic in data mining since rules are easy to interpret
and understand. However, general association rule discovery methods usually
generate too many rules including a lot of uninteresting rules. In addition, most
algorithms are inefficient when the minimum support is low. In this section, we
propose two new interestingness criteria which overcome problems of existing
approaches and can be used in finding interesting patterns in data sets with
very unbalanced class distributions.
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2.1 Interestingness Criterion Selection

We first introduce the notation used in this paper.
A set of attributes is {A1, A2, . . . , Am, C}. Each attribute can take a value from
a discrete set of values. For example, Ai ∈ {ai1 , ai2 , . . . , aip}. C is a special
attribute which contains a set of categories, called classes. A record is T ∈
A1 × A2 × . . . × Am × C, and a set of records from a data set is denoted by
D = {T1, T2, . . . , Tn}. A pattern is a subset of a record, P ⊂ D. The support of
a pattern P is the ratio of the number of records containing P to the number
of all records in D, denoted by sup(P ). A rule is in the form of P ⇒ c. The
support of the rule is sup(P ∪ c) 4. The confidence of the rule is defined as
conf(P ⇒ c) = sup(Pc)/sup(P ).

If a data set has very unbalanced class distributions many existing interest-
ingness criteria are unable to capture interesting information from the data set.
In the following we will use a two-class example to demonstrate this. Assume
that sup(c1) = 0.99 and sup(c2) = 0.01. Note that ¬c1 = c2 since there are only
two classes.

One of the mostly used interestingness criteria is support. A minimum sup-
port of 0.01 is too small for class c1, but too large for class c2. Another such
criterion is confidence, which can be written for class c2 as conf(P ⇒ c2) =

sup(Pc2)
sup(Pc1)+sup(Pc2)

. We can see that any noise in class c1 will have a significant
impact on class c2, e.g. causing sup(Pc1) ∼ sup(Pc2). As a result, we can hardly
find any high confidence rules in the smaller class, c2. Similarly, gain (Fukuda
et al. 1996) suffers the same problem as confidence.

Other alternatives can be similarly evaluated. For example, conviction (Brin
et al. 1997), defined as conviction(P ⇒ c) = sup(P )sup(¬c)

sup(P¬c) , measures deviations
from the independence by considering outside negation. It has been used for
finding interesting rules in census data. A rule is interesting when conviction
is far greater than 1. The conviction for class c2 in our example is written as
conviction(P ⇒ c2) = sup(P )sup(c1)

sup(Pc1)
. Since sup(c1) ≈ 1, we have sup(Pc1) ≈

sup(P ). As a result, conviction(P ⇒ c2) ≈ 1. This means we will not find any
interesting rules in the small class using the conviction metric.

On the other hand, we can prove that lift (Webb 2000), interest (Brin et al.
1997), strength (Dhar & Tuzhilin 1993)) or the p-s metric (Piatetsky-Shapiro
1991) all favour rules in small classes. Here we use lift to show this. The metric
lift is defined by lift(P ⇒ c) = sup(Pc)

sup(P )sup(c) . A rule is interesting if its lift is far

greater than 1. For large class c1 we have lift(P ⇒ c1) = sup(Pc1)
sup(P )sup(c1)

≈ 1 since
sup(c1) ≈ 1. As a result, we can hardly find any high lift rules from the large
class using the lift metric.

A statistical metric is fair for rules from both large and small classes. One
such statistical metric is the odds-ratio, which is defined as Odds-Ratio(P ⇒
c) = sup(Pc)sup(¬P¬c)

sup((¬P )c)sup(P¬c) . However, odds-ratio does not capture the interesting
rules we are looking for. We show this with the following examples.
4 For convenience, we abbreviate P ∪ c as Pc in the rest of the paper.
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Notation
P ¬P

c1 sup(Pc1) sup(¬Pc1)
c2 sup(Pc2) sup(¬Pc2)

Example 1
P ¬P

c1 0.297 0.693
c2 0.006 0.004

Example 2
P ¬P

c1 0.792 0.198
c2 0.0095 0.0005

In Example 1, the probability of pattern P occurring in class c2 is 0.6, which is
twice as that in class c1. In Example 2, the probability of pattern P occurring in
class c2 is 0.95, which is only 1.19 times of that in class c1. Hence rule P ⇒ c2 is
more interesting in Example 1 than in Example 2. However, odds-ratio(A ⇒ c2)
is 3.5 in Example 1 and 4.75 in Example 2 and this leads to miss the interesting
rule in Example 1.

To have an interestingness criterion that is fair for all classes regardless of
their distributions, we propose the following two metrics.

– Local support, defined in Equation 1:

lsup(P ⇒ c) = sup(Pc)/sup(c) (1)

When we use local support, the minimum support value will vary according
to class distributions. For example, a local support value of 0.1 means 0.099
support in class c1 and 0.001 in class c2.

– Exclusiveness, defined in Equation 2:

excl(P ⇒ ci) =
lsup(P ⇒ ci)∑|C|
j lsup(P ⇒ cj)

(2)

Such a metric is normalised ([0, 1]) and fair for all classes. If pattern P occurs
only in class ci, the exclusiveness will reach one, which is the maximum value.

We now discuss the practical meaning of the exclusiveness metric. From the
formula, it can be seen that it is a normalised lift, i.e.,

excl(P ⇒ ci) =
lift(P ⇒ ci)∑|C|
j lift(P ⇒ cj)

(3)

The term lift(P ⇒ ci) is the ratio of the probability of P occurring in class
ci to the probability of P occurring in data set D. Hence the higher the lift, the
more strongly P is associated with class ci. However as discussed above, lift(P ⇒
ci) ≈ 1 when sup(ci) ≈ 1. As a result, it is difficult to get a uniform minimum lift
cutoff for all classes. From Equation 2, it can be seen that |C| × excl(P ⇒ ci) is
the ratio of the lift of P in Class ci to the average lift P in all classes. Therefore,
it is possible to set a uniform exclusiveness cutoff value for all classes regardless
of their distributions. More importantly, the metric exclusiveness reveals extra
information that lift fails to identify. For example, if we have three classes c1, c2

and c3, and sup(c1) = 0.98, sup(c2) = 0.01 and sup(c3) = 0.01, it is possible that
we have a pattern P such that both lift(P ⇒ c2) and lift(P ⇒ c3) are very high.
However, exclusiveness will not be high for either class since P is not exclusive
to any single class.

The above two metrics (local support and exclusiveness) and lift are used in
our application for identifying groups of high risk to adverse drug reactions.
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2.2 Efficient Interesting Rule Discovery

There are many association rule discovery algorithms such as the classic Apriori
(Agrawal & Srikant 1994). Other algorithms are faster, including Han et al.
(2000), Shenoy et al. (1999), Zaki et al. (1997), but gain speed at the expense of
memory. In many real world applications an association rule discovery method
fails because it runs out of memory, and hence Apriori remains very competitive.
In this application, we do not use any association rule discovery algorithm since
it is not necessary to generate all association rules for interesting rule discovery.

In the following, we first briefly review definitions of a general algorithm
for discovering interesting rule sets and informative rule sets (Li et al. 2001, in
press), and then argue that the algorithm fits well with our application.

Given two rules A ⇒ c and AB ⇒ c, we call the latter more specific than
the former or the former more general than the latter. Based on this concept,
we have the following definition.

Definition 1. A rule set is an informative rule set if it satisfies the following two
conditions: 1) it contains all rules that satisfy the minimum support requirement;
and 2) it excludes all more specific rules with a confidence no greater than that
of any of its more general rules.

A more specific rule covers a subset of records that are covered by one of
its more general rules. In other words, a more specific rule has more conditions
but explains less cases than any of its more general rules. Hence we only need a
more specific rule when it is more interesting than all of its more general rules.
Formally, P ⇒ c is interesting only if for all P ′ ⊂ P Interestingness(P ⇒ c) >
Interestingness(P ′ ⇒ c). Here Interestingness stands for an interestingness
metric. In the current application we use local support, lift and exclusiveness
as our metrics. Local support is used to vary the minimum support among
unbalanced classes to avoid generating too many rules in one class and too few
rules in another class. Lift is used to consider rules in a single small class, and
exclusiveness is used for comparing interesting rules among classes. We prove in
the following that using the informative rule set does not miss any interesting
rules instead of the association rule set.

Lemma 1. All rules excluded by the informative rule set are uninteresting by
the lift and exclusiveness metrics.

Proof. In this proof we use AB ⇒ c to stand for a more specific rule of rule
A ⇒ c. AB ⇒ c is excluded from the informative rule set because we have
conf(AB ⇒ c) ≤ conf(A ⇒ c).

We first prove that the lemma holds for lift. We have
lift(A ⇒ c) = sup(Ac)

sup(A)sup(c) = conf(A⇒c)
sup(c) ≥ conf(AB⇒c)

sup(c) = lift(AB ⇒ c)
As a result, rule AB ⇒ c is uninteresting according to the lift criterion.

For the exclusiveness, we first consider a two-class case, c and ¬c. We have
conf(A ⇒ ¬c) = 1− conf(A ⇒ c). Since conf(AB ⇒ c) ≤ conf(A ⇒ c), we have
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conf(AB ⇒ ¬c) ≥ conf(A ⇒ ¬c). Further we have lift(AB ⇒ c) ≤ lift(A ⇒ c),
lift(AB ⇒ ¬c) ≥ lift(A ⇒ ¬c) and therefore

excl(A ⇒ c) = lift(A⇒c)

lift(A⇒c)+lift(A⇒¬c)
≥ lift(A⇒c)

lift(A⇒c)+lift(AB⇒¬c)

≥ lift(AB⇒c)

lift(AB⇒c)+lift(AB⇒¬c)
= excl(A ⇒ c)

Hence, AB ⇒ c is uninteresting according to the exclusiveness metric.
For more than two classes, we do not provide a direct proof. Instead we

have the following rational analysis. Let ci be any class.
∑|C|

j conf(A ⇒ cj) =∑|C|
j conf(AB ⇒ cj) = 1, When conf(AB ⇒ ci) ≤ conf(A ⇒ ci), we must have

at least one class cj such that conf(AB ⇒ cj) ≥ conf(A ⇒ cj). Further, we have
lift(AB ⇒ ci) ≤ lift(A ⇒ ci) and lift(AB ⇒ cj) ≥ lift(A ⇒ cj). As a result,
pattern AB is more interesting in class cj than in class ci, and rule AB ⇒ ci is
uninteresting by exclusiveness.

Thus we can use the informative rule set instead of the association rule set
for interesting rule discovery.

The advantages of using the informative rule set are listed as following.
Firstly, the informative rule set is much smaller than the association rule set
when the minimum support is small. Secondly, the informative rule set can be
generated more efficiently than an association rule set. Thirdly, this efficiency
improvement does not require additional memory, and actually the informative
(IR) rule set generation algorithm (Li et al. 2001, in press) uses less memory
than Apriori.

The IR algorithm was initially implemented on transactional data sets where
there are no pre-specified classes. Optimal Class Association Rule set generator
(OCAR)(Li et al. 2002) is a variant of the IR algorithm on relational data sets
for classification. Since a relational data set is far denser than a transactional
data set, OCAR is significantly more efficient than Apriori.

In our application we used a modified OCAR, which uses the exclusiveness
as the interestingness metric instead of the estimated accuracy as used in the
original OCAR.

Rule discovery requires appropriate features to find significant rules. Feature
selection is therefore discussed in the next section.

3 Feature Selection Method

We use statistical methods such as bivariate analysis and logistic regression to
identify the most discriminating features associated with patient classes.

3.1 Bivariate Analysis

Assume that the dependent variable represents a yes/no binary outcome, e.g.,
having the disease or not having the disease, an m × 2 frequency table (Ta-
ble 1) can be used to illustrate the calculation of the χ2 value for a categorical
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independent variable with m levels. Specifically, we have

χ2 =
m∑

i=1

[
(ni1 − Ei1)2

Ei1
+

(ni2 − Ei2)2

Ei2
] (4)

where Eij is the expected count in cell ij, which is equal to CjRi/N , i = 1, · · · ,m
and j = 1, 2. The term, N , refers to the total number of counts.

Independent Variable Dependent Variable
level Yes No Row Total

1 n11 n12 R1
2 n21 n22 R2
3 n31 n32 R3

.

.

.
.
.
.

.

.

.
.
.
.

m nm1 nm2 Rm

Column Total C1 C2

Table 1. The m × 2 frequency table. Here the row total, Ri, and the column total,
Cj are the sums of all cells in a row and column respectively, i.e., Ri = ni1 + ni2 and
Cj =

∑m

i=1
nij .

The calculated χ2 value for each independent variable can be compared with
a critical (or cut-off) χ2 value for m−1 degrees of freedom at a required p value.
The value p denotes the degree of confidence with which to test the association.
For example, a p value of 0.01 indicates that the association will be tested at the
99% confidence. If the calculated χ2 value is larger than the cut-off value, it can
be concluded that the independent variable is associated with the dependent
variable in the study population. Otherwise, the independent variable is not
related to the dependent variable and will not be selected as a feature.

Similarly if the independent variable is continuous, the t value can be used
to test for correlation between the dependent and independent variables. Since
our class association rule discovery algorithm only takes categorical variables,
calculation details of the t value are skipped.

3.2 Logistic Regression

An alternative multivariate statistical method is logistic regression. A logistic
regression model can be written as the following equation:

ln(
p

1− p
) = α + β1x1 + β2x2 + · · ·+ βnxn (5)

where p is the probability, at which one of the binary outcomes occurs (e.g., the
probability of having the disease), α is the intercept, and βi is the coefficient of
the independent variable xi. The coefficient, βi, can be transformed into a more
meaningful measure, the odds ratio (OR), by the following formula:

ORi = eβi (6)
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Odds ratios can be used to infer the direction and magnitude of the effects of the
independent variables on the probability of the outcome. An odds ratio greater
than 1 indicates that the probability of the outcome (e.g., having the disease)
will increase when a continuous independent variable increases a unit in its value
or when a specific group of a categorical independent variable is compared to
its reference group. For example, if the dependent variable is the probability of
having migraine, the independent variable is gender, and male is used as the
reference group, an odds ratio of 2.0 then implies that females are 2.0 times
more likely to have migraine than males. As a result, only independent variables
with odd ratio values much larger or smaller than 1 will be selected as important
features.

4 Data

The Queensland Linked Data Set (Williams et al. 2002) has been made avail-
able under an agreement between Queensland Health and the Commonwealth
Department of Health and Ageing (DoHA). The data set links de-identified pa-
tient level hospital separation data (1 July 1995 to 30 June 1999), Medicare
Benefits Scheme (MBS) data, and Pharmaceutical Benefits Scheme (PBS) data
(1 January 1995 to 31 December 1999) in Queensland.

Each record in the hospital data corresponds to one inpatient episode. Each
record in MBS corresponds to one MBS service for one patient. Similarly, each
record in PBS corresponds to one prescription service for one patient. As a result,
each patient may have more than one hospital, or MBS or PBS record.

4.1 Selection of Study Population

PBS data in QLDS contain mostly prescription claims for concessional or repa-
triate cardholders. There are a total of 733,335 individuals in PBS and 683,358
of them appear as always concessional or repatriate during our five year study
period. This represents 93% of all individuals in PBS. Since the drug usage his-
tory of these 683,358 individuals is covered more completely in PBS, a subset of
them is chosen as our study population, i.e, those who take a particular type of
drug.

The adverse drug reaction to be investigated in this study is angioedema
associated with the use of ACE inhibitors (Reid et al. 2002). This is a known
adverse reaction and the aim of this investigation is to confirm its existence from
administrative health data using the proposed algorithm. Drugs are identified in
PBS using the WHO codes, which are based on the Anatomical and Therapeutic
Classification (ATC) system. Adverse events are identified in hospital data using
principal diagnosis codes. Table 2 shows the number of ACE inhibitor users split
into two classes, those having and not having angioedema. It can be seen that
the distribution of the two classes is very unbalanced and Class 1 is only 0.088%
of the whole study population. However, this is the class we are interested in
characterising. Section 2 has already described how to find rules to characterise
such an under-represented class.
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Angioedema
Yes No

(Class 1) (Class 0) Total

Counts 116 131,184 132,00
Percentage 0.088 99.912 100

Table 2. Study population split into two classes.

4.2 Feature Selection

The aim of the feature selection process is to select those variables which are
strongly associated with the dependent variable, based on statistical analysis
described in Section 3. For our particular study the dependent variable is the
probability of having angioedema for ACE inhibitor users.

From the hospital data we initially extract variables, such as age, gender,
indigenous status, postcode, the total number of bed days, and 8 hospital flags.
The last two variables are used to measure the health status of each patient.
From the PBS data, 15 variables (the total number of scripts of ACE inhibitors
and 14 ATC level-1 drug flags) are initially extracted. The variable “total number
of scripts” can be used to indicate how long an individual is on ACE inhibitors.
The ATC level-1 drug flags are used to investigate adverse reactions caused by
possible interactions between ACE inhibitors and other drugs.

Using the feature selection method described in Section 3, the 15 most dis-
criminating features are selected. These features include age, gender, hospital
flags, and flags for exposure to other drugs. The optimal class association rule
discovery algorithm then run on the extracted data.

5 Results

The interesting association rule discovery algorithm described in Section 2 is
applied to the data set with 132,000 records. There are several input parameters
to the algorithm. Two of them are the minimum local support and the maximum
length (number of variables used in each rule). In our tests we set the minimum
local support to 0.05 and the maximum length to 6. The rules (thousands) are
sorted by their value of interestingness in descending order. Only the top few
rules with highest interestingness values are described here for verbosity. The
top three rules and their characteristics are shown in Table 3.

Rule 1
– Gender = Female
– Age ≥ 60
– Took genito urinary system and sex hormone drugs = Yes
– Took Antineoplastic and immunimodulating agent drugs = Yes
– Took musculo-skeletal system drugs = Yes

Rule 2
– Gender = Female
– Had circulatory disease = Yes
– Took systemic hormonal preparation drugs = Yes
– Took musculo-skeletal system drugs = Yes
– Took various other drugs = Yes

Rule 3
– Gender = Female
– Had circulatory disease = Yes
– Had respiratory disease = Yes

9



Rule 1 Rule 2 Rule 3

Number of patients in the group 1,549 1,629 1,999
Percentage of this group 1.17 1.23 1.51
Number of patients in Class 0 1,542 1,622 1,991
Number of patients in Class 1 7 7 8
Local support in Class 1 6.03% 6.03% 6.90%
Interestingness 0.838 0.831 0.820
Lift of Class 1 5.14 4.89 4.55

Table 3. Characteristics of groups identified by Rules 1 to 3.

– Took systemic hormonal preparation drugs = Yes
– Took various other drugs = Yes

For example, the group identified by Rule 1 has a lift value of 5.14 for Class 1.
This indicates that individuals identified by this rule are 5.14 times more likely
to have angioedema than the average ACE inhibitor users.

[55.6 62.1 1.12]
Female

Gender
Male

[44.4 37.9 0.85]

Age Group

[42.4 48.3 1.14]
60+

[13.2 13.8 1.05]
59−

P.Genito urinary system and sex hormones

[18.2 29.3 1.61]
Yes

[24.2 19.0 0.78]
No

P.Antineoplastic and immunimodulating agents

Yes
[1.2 6.0 5.14]

No
[0.3 0.0 0.0]

P.Musculo−skeletal system

No
[16.7 23.3 1.39]

Yes
[1.4 6.0 4.21] [sup(A)(%) lsup(A=>C)(%) lift(A=>C)]

Fig. 1. Probability tree of Rule 1.

Figure 1 provides graphic presentation of Rule 1 in terms of a probability tree.
According to the probability tree, female ACE inhibitor users are 1.12 times more
likely to have angioedema than the average ACE inhibitor users. For female ACE
inhibitor users aged 60 years or older, the likelihood increases to 1.14. As the
tree goes further down, i.e., females aged 60 years or older who have also taken
genito urinary system and sex hormone drugs, the likelihood increases further to
1.61. If individuals who have all the characteristics mentioned above and have
also used antineoplastic and immunimodulating agent drugs, the likelihood goes
up to 4.21 times of the average ACE inhibitor users. Finally, in addition to all
the above mentioned characteristics, the factor of exposure to musculo-skeletal
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system drugs, raises the risk factor of having angioedema up to 5.14 times of the
average ACE inhibitor users.

6 Discussion and Conclusions

We have developed an algorithm for mining optimal class association rule sets
and have applied the algorithm to a very unbalanced data set to identify groups
with high risks of having adverse drug reactions. A feature selection method
based on statistical analysis has also been developed to select appropriate fea-
tures for our data mining algorithm.

Results from testing the association of angioedema with usage of ACE in-
hibitors have identified groups that are, on average, 4 to 5 times more likely to
have an adverse reaction (angioedema) than the average ACE inhibitor users. We
note that while the data mining approach has successfully identified key areas
in the data worthy of exploration and explanation, conclusions relating to the
suitability of ACE inhibitor usage for particular populations need to be further
investigated and confirmed by medical specialists, or existing medical studies.

This study has focused on analysing a known adverse reaction to confirm the
approach. The more challenging task of identifying unknown adverse reactions
from administrative health data like QLDS is ongoing.
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