Mining Taxation Data with Parallel BMARS*

Sergey Bakin
Department of Mathematics
The University of Queensland

St. Lucia, Brisbane, QId 4072,
Australia,

Markus Hegland

Computer Sciences Laboratory
Australian National University
ACT 0200, Australia

Markus. Hegland @anu. edu. au
Sergey@maths.uq.edu.au

Graham Williams

CSIRO Math and Info Sciences
GPO Box 664, Canberra

ACT 2601, Australia

Graham. Williams@cmis. csiro.au

Abstract

A new parallel version of Friedman’s Multivariate Adaptive Regression Splines
(MARS) algorithm is discussed. By partitioning the data over the processors of
a parallel computational system one achieves good parallel efficiency. Instead
of using truncated power basis functions of the original MARS, the new method
(BMARS) utilises B-splines which improves numerical stability and reduces the
computational cost of the procedure. In addition, the coefficients of the basis
functions of a BMARS model provide quickly accessible information about
the local behaviour of the function. The algorithm has a time complexity
proportional to the number of data records. The method provides a new means
for the detection of areas in the space of features which are characterised by
the “interesting” patterns of response values. This is applied to searching for
classes of incorrect tax returns using multiple predictor variables or features.
The parallel algorithm makes it feasible to investigate very large databases,
such as the taxation database.

*The authors acknowledge the support provided by the Cooperative Research Centre for Ad-
vanced Computational Systems (ACSys) established under the Australian Government’s Coopera-
tive Research Centres Program and the support provided by the Australian Taxation Office.

1 Introduction

Millions of dollars are at risk each year due to inappropriate tax practices. Thus
there are large benefits if one is able to detect errors and fraud. While a detailed
analysis of every tax return is infeasible one is interested in tools to detect classes of
people which are more likely to be involved in fraud. The tax declarations of these
people can then be further examined. An important tool used to find the different
classes of people generates a predictive model from the data. This model provides an
estimate of the risk that fraud might have been committed.

A major difficulty in finding a good risk model is posed by the size of the data
which typically contains records from several years with millions of records per year
and up to 100 features per record. It is extremely important that methods are used
which scale well with the data size and are capable of handling high dimensional data.
Ideally, the research into fraudulent behaviour is done with an interactive system and
the short response time provided by parallel processing is essential. This scenario is
typical for data mining applications [5].

From a statistical point of view the determination of risk from data can be ad-
dressed by logistic regression. As the investigation is of an exploratory nature, spline-
based techniques are used which do not make limiting assumptions on the form of
the functions. The Multivariate Adaptive Regression Splines method [6] success-
fully addresses high dimensionality and heterogeneous predictor variables. It is also
scalable.

Typically, only a very small percentage of all records in a database represent fraud.
If the records are indexed by n, the response variable y, shall denote fraud (y, = 1)
or no fraud (y, = 0). The other attributes of the record are collected in the predictor
variable x,, with both numeric and categorical components. Then the model used is
that the y, are independent random variables and p(x,) shall denote the probability
that y, = 1. Thus

Yn ~ Bernoulli[p(x,)], n=1,...,N.

The estimate p of p is modelled as

A

L enlfe)
P = (P)

where f(x) is constructed by MARS in the following additive form [6]:

Y

d d d
f(X) = Zf'u(xv) + Z fvl,'uz(xvlaxvg) + -+ Z fvl,...,'uk(xvla .. ;ka)-
v=1

V1 >vU2 V1> D>V

The highest order k of the interaction terms typically is chosen between 1 and 4
and z, is the v-th component of x. These models have also been called ANOVA
splines [16], [3] due to their similarity with the additive models in analysis of variance.
The interaction terms reveal essential information as they allow the determination of

localised “pockets” in the data characterised by a higher number of occurrences of
detected fraud.

MARS constructs f as a linear combination of basis functions f(z) = Z}']:O a; T;(x).
The basis functions Tj(x) are products of one-dimensional basis functions which are
characteristic (or indicator) functions in the case of categorical variables and trun-
cated power functions in the case of numeric variables. The key to the method, which
can be viewed as a successor of the regression trees [2] is that the T}(x) are generated
in a recursive way and depend on the data. In particular, two new basis functions
are generated at each step of the form

Trna(x) = Tz = s)]+
Tr2(x) = T(x)[=(z0 =)4,

where the Tj(x), j = 0,...,J are the parent basis function and the [(z, — s)];+
and [—(z, — s)];+ are univariate truncated power basis functions of an appropriately
chosen variable z, which does not appear in the parent basis function. The new
basis functions are selected such that the residual sum of squares corresponding to
the augmented model

N T+2
RSS[model| = o Inia%+ Z [yn - Z a;T;(Xn)
e @42 T =0

is minimal. This process is terminated if no further substantial reduction in RSS[model]
can be achieved in this way. After this forward selection step a further step, called
backward elimination, removes unnecessary basis functions using a GCV estimate of
the expected error in order to reduce over-fitting. Having built the set of tensor prod-
uct basis functions {7}(x)}7_y, MARS obtains values for the regression coefficients
do, - - - ,ay via linear logistic regression using the Fisher Scoring Algorithm [10].

MARS has been a highly successful data mining tool. In this project it is discussed
how this tool has been improved by

e Using compactly supported B-spline basis functions
e Utilising a new scale-by-scale model building strategy

e Introducing a parallel implementation

These modifications allow the stable and fast analysis of very large data sets which
occur in taxation data.

While the focus of the previous discussion has been on the modelling of risk of
fraud there is a good case to be made for investigating records which are “unusual”.
In order to find such records one can model one of the attributes, e.g., the deductions,
as a function of the other attributes. Records would be unusual if the predicted value

3

of this attribute is far from the observed value. As such unusual records are only few
it does not cost much to investigate them further and this could be a good indicator
to find someone who has been attempting to “trick the system”.

In Section 2 the BMARS algorithm is introduced together with the parallel im-
plementation. The performance of the algorithm is presented in Section 3. In Section
4 the application to taxation data risk rating is discussed. A final discussion of the
results is in Section 5.

2 BMARS = B-splines + MARS + Parallelisation

The MARS algorithm has been implemented using truncated power basis functions.
Utilisation of such a basis may lead to ill-conditioned linear systems of equations [1],
[4] which, in turn, may result in poor quality of the fit. Some other bases such as, for
instance, B-splines, have better numerical properties [14]. In this section we outline
an algorithm called BMARS based on the principles similar to those of the original
MARS but utilising B-spline basis functions of the second order. These are piecewise
linear functions fully characterised by three knots and are often referred to as hat
functions. Although B-splines of any order can, in principle be used in BMARS, we
chose basis function of the second order for the following reasons:

e utilisation of the simplest continuous B-splines significantly simplifies imple-
mentation,

e approximation with tensor products of piecewise linear functions is more resis-
tant to the so-called end-effects [6].

Note that, although they are constructed using different bases, models produced by
MARS and BMARS belong to the same space of d-variate functions piecewise linear
in each variable. As is well-known, B-splines are distinct from zero only within a
compact interval (a compact support property) and the length of the interval can be
controlled via selection of the knot locations. We exploit this fact to introduce a new
modified forward stepwise procedure which builds models in a scale-by-scale manner,
where the scale is the length of the support interval.

Like the original MARS, BMARS is comprised of two modules. The first one
(the forward stepwise procedure) produces a model made up of a large number of
tensor product basis functions some of which may be suboptimal. The second module
(backward elimination) is intended to remove the suboptimal basis functions and,
thereby improve the quality of the fit.

The forward procedure of BMARS is based on the combination of the original
MARS algorithm with a new scale-by-scale approach to model building. To im-
plement this approach we use B-splines of various scales. Such B-splines can be
constructed using L nested sets of knots' for each numeric predictor variable. For ex-

!The number L of the sets can be either determined based on the coin-tossing argument outlined
in [6] or specified by a user.

ample, the [th set can be comprised of (100/2')th percentiles of the empirical marginal
distribution of the corresponding variable. For each knot set one can construct a basis
comprised of B-splines (see Figure 1) which are to be used by the algorithm. In the
case of uniformly distributed predictor data points, B-splines based on the [th set
have twice as long support intervals as B-splines based on the (I + 1) set.

S S S S S KNOTS

Figure 1: B-splines constructed based on a set of knots.

Like models by MARS, a model built by BMARS is comprised of tensor product
basis functions

fla) =3 a1 (x).)

However, each tensor product basis function is a product of univariate B-splines
rather than truncated powers:

7,0) = T B i))

k=1

These basis functions are produced according to the following procedure (for now
we assume that all the predictor variables are numeric). One starts with the model
containing only the constant function

T() (X) =1.
The next basis function is derived from Ty(x) by
Ti(x) = To(x) Bs[z,], (3)

where Bg[x,] is a B-spline of the largest scale available for z,, and the values for s
and v are chosen to ensure the largest reduction in the value of the residual sum of
squares resulting from the least squares fit of the current model to data. Note that
B-splines of the largest scale only are allowed to form the new tensor product basis

function 77 (x). Having selected thus 77(x), the procedure continues to generate new
basis functions in the same way. Specifically, after the J-th step there are (J + 1)
functions

{T;=)} (4)

in the model, each of the form (2) and the (J+1)-st step adds one new basis function
such that

Tri1(x) = Ty (%) By [z,e]. (5)

Here T} (x) is one of the (J + 1) already chosen basis functions (4), 0 < j* < J; z,
is one of the predictor variables not present in T}-(x); and Bi-[z,-] is a univariate B-
spline basis function of the largest available scale. The values for the three parameters
j*,v*, s* defining T, are chosen such that the residual sum of squares is minimal,
i.e., as the solution of the minimisation problem

(5%, v*, s*) = arg min RSS[model U Ty, (x)], (6)

j”uﬁs

where T4 (x) = T;(x)Bs[z,] and

N J 2
RSS[model UT;1(x)] = min Z Yn — Z a;T;(xn) — ays1Ty41(xn)
=1 =0

A1y 53741
n—

In order to obtain the value of the functional RSS[modelUT; 1 (x)], one has to perform
a least squares fit. The algorithm proceeds along these lines until the moment when
the B-splines of the current (largest) scale are unable to improve the approximation.
The splines of the largest scale are only able to approximate relatively coarse features
of a regression surface. Therefore, at this stage, BMARS switches over to using
B-splines of the second largest scale in (5). In order to determine when to carry
out the switch, BMARS estimates the prediction error of the current model via the
Generalised Cross-Validation (GCV) score [6] after adding each new basis function to
the model and, as soon as the GCV score ceases to decrease, the switch occurs. The
algorithm proceeds to produce new tensor product basis functions according to the
formula (5), where B;|xz,] are B-splines of the second largest scale. When the splines
of the second scale exhaust their potential, BMARS switches over to the third largest
scale. This process of producing new basis functions as well as switching from scale
to scale continues until the size of the model has reached a predetermined complexity.
It is worth noting that, because each new basis function has been derived from an
earlier basis function, B-splines of any available scale may, in principle, appear as
factors in any basis function (2). This algorithm based on the scale-by-scale model
building strategy is summarised by the pseudo-code 1.

6

Algorithm 1 BMARS algorithm
model < {7Ty(x)}, where Ty(x) =1
curr_scale < largest_scale
for j =0 to Jmax — 1 do
Tji1(x) = Tj»(x) By« |24+ |, where j*, v*, s* are from (6); By« [2,+] is of curr_scale
model < model |JTj11(x)
if GCV fails to decrease then
curr_scale < next_largest_scale
end if
end for

The backward elimination procedure of BMARS as well as the approach to de-
termination of the regression coefficients ay,...,a; in the final model (1) via the
Fisher Scoring procedure are similar to those utilised in the original MARS [6], [7].
Note that, like the original MARS, BMARS allows for a straightforward handling of
categorical variables via replacement of B-splines in (2) with appropriate indicator
functions though the idea of the scale-by-scale model building is not applicable in
this case. It turns out [1] that the computational complexity of the forward stepwise
procedure can be estimated as

Prorwd ~ Jmax(@Jmax + B)Nd. (7)

where a and 3 are some parameters independent of the parameters of the problem in
hand (d, N etc). Execution of the backward elimination procedure is less expensive.
It is easy to show that the corresponding complexity can be evaluated as

1
Phackwd ™~ VJmax + §NJr2nax- (8)

where v is a problem independent parameter. So, the total computational cost of
BMARS is linear in the number of data points N as well as the number of predictor
variables. This makes BMARS suitable for performing an efficient large scale data
analysis often referred to as Data Mining.

Now we would like to contrast the MARS and BMARS algorithms with a standard
statistical forward subset selection procedure (FSS) [11]. MARS builds a model by
adding basis functions one at a step and so does the FSS algorithm. However, the
former selects a new basis function from a relatively small subset of all available
tensor product basis functions. Specifically, at each step such a subset is comprised
of basis functions that can be derived from the ones selected earlier. Therefore, models
produced by the forward stepwise procedure of MARS have a hierarchical structure.
In contrast to this, the FSS algorithm may, in principle, add any tensor product
basis function from the full set of basis functions at any step regardless of the type

7

of basis functions added to the model before. As a consequence, the computational
work required to carry out one step of MARS is considerably less than that of the
FSS procedure and the reduction in the computational cost is especially dramatic
in high-dimensional settings where the number of elements in the full set of tensor
product basis functions is astronomical. Thus, the forward stepwise procedure of
MARS can be regarded as an efficient version of an ordinary statistical forward subset
selection (FSS) algorithm and this interpretation can be extended to BMARS as well.
However, the way in which BMARS approximates the FSS algorithm is somewhat
different from that of MARS. As was set out before, MARS selects its new basis
functions from among the candidates derived according to the rule (1). Note that
the univariate truncated powers [+(z, — s)]; corresponding to all knot locations s
are allowed to be the factors. The BMARS strategy goes even further in narrowing
the set of the candidates. Although it uses the rule (5) (which is similar to (1)) to
define the set of the candidate basis functions, at each step it restricts the scale of
the B-splines allowed which, in the terms of MARS, would mean that some of the
knots are skipped. Of course, using B-splines of only one scale would result in a
poor accuracy of the produced models. Therefore, the algorithm was enabled to use
different scales at different steps.

Although introduction of the scale-by-scale strategy resulted in a considerable
reduction of the computational cost of running BMARS, it is important to explore
possibilities for parallel distributed implementation of the algorithm because:

e It would allow for distribution of the computational load among several proces-
sors or computers. This would lead to a considerable reduction in the execution
time of Data Mining applications.

e In Data Mining one often has to deal with large amounts of data. A parallel
distributed implementation would allow for utilisation of the Random Access
Memory of a number of systems which, in turn would allow one to solve larger
problems than it would be possible using only one particular computational
System.

Here we describe a parallel version of the BMARS algorithm intended to run on a
cluster of workstations as well as on a multiprocessor system. As we saw earlier in
(7), (8), the generation of tensor product basis functions accounts for the bulk of
the computational cost. Therefore, we focus our attention on parallelisation of the
forward stepwise module of BMARS though the similar approach can be applied to
parallelisation of the backward elimination procedure as well.

In the BMARS strategy, each new basis function added to the model depends
on the basis functions produced earlier. Thus one has a dependency which prohibits
the parallel construction of basis functions. However, the determination of each new
basis function can be done in parallel. Indeed, in order to generate a new tensor
product basis function 7;,1(x) (5), one has to solve the optimisation problem (6).

The solution of this problem amounts to performing a number of least squares fits
for all appropriate values for the parameters [,v and s. Our parallelisation of the
BMARS algorithm is based on parallel solution of each least squares fit. To perform
a least squares fit we use the version of the Gram-Schmidt algorithm outlined in
the Rejoinder section of [6]. According to this approach, new basis functions are
orthonormalised as they are included with respect to all of those already contained
in the model. Thus, the basis functions Tj(x), 7 =0,...,J contained in the current
model are kept orthonormal to each other. Given the current model comprised of J
basis functions, the next (J + 1)st function (5) selected is the one whose inclusion in
the model results in the minimum value of the residual sum of squares (RSS). For
each candidate basis function 711(x) = 7j(x)Bs[z,]| the corresponding RSS value
can be obtained as follows

[(TJ-H: y) - Zj:O(TJ+17 Tj)(rj:‘ja Y)]Q
(T41, Tpr) = 3j—o(Ten, Tj)?
where RSS[model] is the RSS value for the current model comprised of J tensor
product basis functions. Once the new candidate basis function 7, (x) has been

determined it is included in the model and orthogonolised with respect to the other
basis functions

RSS[model U T4 (x)] = RSS[model] — , (9)

TJ+1 (x) = Tyia(x) = Z(TJ+1: TJ)TJ(X)
j=1
and, then normalised

TJ—}—I (X)

N 4 I
[anl T3+1(Xn)] 2
As the most intensive step of this procedure is the computation of the scalar products
in (9)

TJ-H (X) $—

N
(TJ—I—laTj) = ZTJ—I—I(Xn)j:']'(Xn)a j :01 aJ
n=1
N
(TJ+17y) = ZTJ+1(Xn)yn7 (10)
n=1

the approach based on data partitioning appears to be appropriate. Assuming that
our system is comprised of P processors', the data partitioning involves the allocation
of N/P records of the data set to each processor? where the corresponding partial

In this paper, the term processor refers either a processor of a multiprocessor system or a
member of a cluster of workstations.

2Here we assume that all processors have the same computing power. We will discuss an unequal
distribution of data in a later section.

scalar products

~

Ty, Ty)p = Y Traa(xn)Ti(xn), §=0,...,J

néely,

(TJ—H:y)p - ZTJ+1(XTL)ynJ (11)

nel,

are computed [13]. In the above formula I, is an index set pointing to the portion of
data stored by the pth, p = 1,..., P processor. It should be noted though that, in
order to ensure the uniform distribution of the computational load, data records have
to be assigned to processors randomly rather that in accordance with any determinis-
tic rule. This requirement arises due to the fact that the basis functions produced by
BMARS have compact support, i.e. they are non-zero only over certain subdomains
of the predictor domain. Therefore, if the data is distributed among the processors
in a certain deterministic way, it is easy to see that there always exists an ordering of
data records (due to, for instance the way how the data was collected) which leads
to all or maybe several tensor product basis functions evaluating to zero for all data
points assigned to a particular processor. This, in turn means that such a processor
would have very little or even no job to do because most (or even all) function values
Ty11(x,) and Tj(x,) in (11) would be equal to zero whereas other processes may have
to work at full steam.

The parallel BMARS algorithm has been implemented using the Parallel Virtual
Machine (PVM) software [8], [12]. Any program based on PVM runs on the so-called
parallel virtual machine which is comprised of a number of networked workstations
as well as multiprocessor systems. The architectures of the machines involved may
differ significantly. However, this is of no concern to the user as the actual hardware
is handled by PVM which emulates a computing environment similar to that of a
multiprocessor system with distributed memory. Performing parts of an application
run on the processors of the virtual machine and communicate via sending and re-
ceiving messages to one another. The software based on PVM is highly portable. In
fact, it can run on any platform for which PVM was compiled. The parallel BMARS
algorithm is based on the master-slave paradigm:

e The master component of BMARS computes partial scalar products as well
as carries out various control tasks such as accumulation of the information
produced by the slave components (see below), addition of new basis functions
to a model, issuing instructions for the slaves etc. There is only one master
process running on the parallel virtual machine at any time.

e The master process spawns a number (specified by a user) of the slave pro-
cesses which compute the corresponding partial scalar products. Depending on
the type of the hardware comprising the virtual machine, the slave processes

10

may run either on the processors of a multiprocessor system or on the remote
computers.

The pseudo-code 2 presents the parallel algorithm that solves the minimisation prob-
lem (6) and, thereby determines the new (J + 1)st basis function given the current
model comprised of T;(x), j = 0,...,J. In the next section we investigate the
scalability properties of the parallel BMARS procedure.

Algorithm 2 Generation of the (J-+1)st basis basis function by the parallel BMARS

Best candidate T (x) < 0
Best_RSS < RSS[model]
for For all candidates Ty (x) = T;(x)B;[z,] do
Compute partial scalar products (PSP) (11) for (p =1)
for p=2to P do
Receive PSP values from pth slave processor
end for
Add up PSP values to obtain global scalar products (10)
Determine RSS[model U T (x)] according to (9)
if RSS[model U T;,(x)] < Best_RSS then
T3 (%) <= T (x)
Best_RSS «— RSS[model U T4 (x)]
end if
end for

3 Performance of the Parallel BMARS

To test the performance of the parallel BMARS we carried out an experiment on a
10 Processor Sun Enterprise 4000 with 167TMHz UltraSparc chips and 1MB onboard
caches. It had 4.75GB main memory with 2 Sun Storage Arrays giving 0.5TB disk
storage connected over a fibre channel link. It was running Solaris 2.6 and the PVM
3.3 system. We applied BMARS to the analysis of a large motor vehicle insurance
data set comprised of 1,601,277 records. The graph in the Figure 2 displays the
dependence of an efficiency of the algorithm on the number of processors involved.
The parallel efficiency is defined as
: T
efficiency = T, P’

where P is the number of processors engaged, and T; and Tp are execution times (for
the same code) on one and P processors respectively. As can be seen, the efficiency
of BMARS is quite close to 1 which is the efficiency of an ideal parallel algorithm.
The overheads due to necessity to run a PVM daemon on a system as well as to the

11

cost of the exchange of information between master and slave modules are responsible
for the deviation of the actual efficiency from the ideal level. As was pointed out by
one of the referees, the apparent increase in the efficiency for 4 through 8 processors
could be due to the cache effects compensating for the communication overheads. It
is worth mentioning that it took BMARS ~ 3.5 hours to produce a model on one
processor while the solution of the same problem on 9 processors took only ~ 0.4
hours.

15

efficiency

0.5 A

0 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
number of processors (p)

Figure 2: Efficiency of the parallel BMARS against the number of processors.

The load balancing does not seem to be the issue as long as a multiprocessor
system is used because each processor of the system has the same computing power.
This, however, is not the case when PVM is used to combine the computational
resources of a number of networked (possibly different) computers. The next ex-
periment is intended to illustrate this point. Here we used a cluster of four SUN
workstations connected via a local area network. Each workstation had one proces-
sor! and ran SunOS 5.6 as well as the PVM 3.4 system. We applied the parallel
BMARS to the regression analysis of a synthetic data set comprised of 300,000 data
records, each record containing values of 10 numeric predictor values as well as a
response value. The parallel virtual machine used to run BMARS was configured to
include all four workstations. To monitor performance of the algorithm we used the
XPVM software, version 1.2.5 [9] which is a graphical console and monitor for PVM.
One of the monitor functions it provides is the Utilisation View which shows the state
of the virtual machine during the execution of a parallel application. It displays the

LThe speeds of the processors of the workstations involved in the experiment were unknown.

12

number of processes (tasks) running on the parallel virtual machine “...in each of the
three possible states: busy 'Computing’, in 'PVM Overhead’; or idle 'Waiting’ for a
message. This information is represented by vertical stacks of up to three coloured
rectangles. One stack is used to represent each time instant and one rectangle is
shown for each of the possible task states, with Computing on the bottom, Over-
head in the middle, and Waiting on top. The height of each rectangle in the stack
is proportional to the number of tasks in that state versus the total number of tasks
executing at that time instant.... The overall utilisation for tasks is seen by comparing
the relative height of the rectangles over time, such that in cases of good utilisation
the “Computing” areas are prominent, and for poor utilisation the ’Overhead’ and
"Waiting’ areas dominate...” [9].

The first run of BMARS was performed with the equal number of data point being
assigned to each processor (in fact, workstation) of the parallel virtual machine. The
fragment of the corresponding Utilisation View is shown in the Figure 3. As can be
seen, the Overhead areas were quite prominent. It turns out that the PVM routine
called pvm_barrier [8] caused the overhead (XPVM allows one to establish that).
This routine blocks the calling process until all processes have called it. This routine
is used in BMARS for synchronisation purposes and is called by each process after
it finishes computation of the corresponding partial scalar products. Thus, one can
conclude that some of the workstations were slower than the others.

wxRo> -2z

0

] | =

Close| Computing[Overhead waiting]

Figure 3: Utilisation View corresponding to the equal distribution of data.

XPVM offers another visualisation tool called Space-Time View which allows one
to estimate the relative speeds of the workstations involved. These turned out to
be 1.5 : 1.9 : 1.0 : 1.0. In the second run the number of data points assigned to a
particular workstation was set to be proportional to the speed of that workstation.

13

The corresponding Utilisation View is shown in the Figure 4. This time the Over-
head areas were considerably less prominent. The overall effect of such an unequal
data distribution was also considerable: the execution times obtained via averaging
over 6 independent runs were 490 and 400 seconds in the first and the second cases
respectively.

The important conclusion that can be drawn from these results is that the way in
which data is assigned to the processors of a virtual machine can have a significant
impact on the performance of the parallel BMARS especially in the situations where
the virtual machine is comprised of a number of heterogeneous systems. As was
already pointed out, this is of no concern as long as a genuine multiprocessor system
is used. For instance, the Figure 5 shows the Utilisation View corresponding to
BMARS being applied to the analysis of the same synthetic data set and running on
3 processors of the multiprocessor system mentioned earlier. The data was distributed
equally among the processors. As can be seen, the Overheads and the Waiting areas
were very small which is consistent with the efficiency of BMARS being close to 1 as

shown in Figure 2.

Ovaha q— Waitin .

Figure 4: Utilisation View corresponding to the unequal distribution of data.

LR R

4 Data Mining for Risk Rating in Taxation

The Australian Taxation Office (ATO) is responsible for the collection of taxes in
Australia. Each year some seven million individual tax returns are processed. Based
on a self-assessment system there is the potential for inaccuracies to appear in the
returns. Automated systems are in place to identify many types of inaccuracies. The
ATO has an ongoing program to more efficiently and accurately identify tax returns

14

Figure 5: Utilisation View corresponding to the equal distribution of data on a mul-
tiprocessor system.

containing discrepancies. A study has explored the use of data mining [5] for this
task.

As part of the data mining exercise for the Australian Taxation Office BMARS
was employed to explore for relationships in the data that may provide insights into
compliance. Privacy and commercial in confidence issues restrict the level of details
here, but the results presented give an indication of the approach employed.

The data used for this study consisted of several hundred thousand tax returns
that had been audited, and hence had available with it the outcome of the audit. The
more than twenty variables selected for the study (from a pool of over 100 variables)
consisted of both numeric data (e.g., income) and categorical data (e.g., occupation).

The exploratory study used BMARS to build predictive models. The application
of BMARS across all variables and with all of the data leads to the identification
of the most important variables and the development of a model for predicting risk.
However, an important outcome of most data mining exercises is to provide insights
into the models and to identify patterns of behaviour that exhibit interesting prop-
erties.

The results are in a preliminary stage, requiring validation and refinement, but
nonetheless illustrate the potential application of MARS-type model building to large
collections of real world data. This is made possible because of BMARS’ parallel ar-
chitecture and use of B-splines for improved numerical stability. After developing
initial models of the whole data, and consequently identifying a number of impor-
tant variables, a series of interaction models were built. The aim was to explore
interactions between pairs of specific variables thought to play an important role in

15

determining the level of risk associate with a tax return.

Figure 6: Sample pairwise interactions from models developed by BMARS.

Figure 6 illustrates a number of the interesting interactions identified. Again, the
actual variables in the data corresponding to the X; and X5 axes are not identified for
reasons of privacy. The surface represents the degree of risk as modelled by BMARS,
with peaks representing particularly high levels of risk and troughs representing low
levels of risk.

The models built by BMARS, allow near interactive development of ideas and
drive the further exploration of the data. These explorations have lead to useful
insights into the characteristics of tax returns that may be indicative of fraudulent
practises, or at least common errors.

5 Summary

In this paper we have presented the BMARS algorithm. This parallel algorithm has
been shown to significantly shorten the task of building Multivariate Adaptive Re-
gression Spline based models. This allows refinements to the model building process
to be made interactively, and provides a useful tool for the exploration of relationships
in extremely large datasets. Such activity is common in data mining and is beginning
to be used in regular data mining activities involving very large, real world, datasets.

16

References

[1] Bakin, S., Adaptive Regression and Model Selection in Data Mining Problems,
PhD Thesis, ANU, 1999.

[2] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., Classification and
Regression Trees, Wadsworth, Belmont, California, 1984.

[3] Chen, Z., Beyond additive models: interactions by smoothing spline methods,
Technical Report, SMS-009-90, The Australian National University, 1990.

[4] Cox, M.G., Practical spline approximation, Topics in Numerical Analysis, Lan-
caster, 1981, 79- 112.

[5] Fayyad, U. and Piatetsky-Shapiro, G. and Smyth, P., From Data Mining to
Knowledge Discovery: An Overview, Advances in Knowledge Discovery and Data
Mining, MIT Press, Cambridge, MA, 1996, 1-36.

[6] Friedman, J.H., Multivariate Adaptive Regression Splines, The Annals of Statis-
tics, 19, 1, 1991, 1-141.

[7] Friedman, J.H., Estimating functions of mixed ordinal and categorical variables,
Stanford University, Technical Report NO.108, June 1991.

(8] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., PVM: Parallel
Virtual Machine, MIT Press, 1994.

9] Kohl, J.A. and Geist, G.A., XPVM 1.0 User’'s Guide, Technical Report
ORNL/TM-12981, Oak Ridge National Laboratory, 1996.

[10] McCullagh, P. and Nelder, J.A., Generalized Linear Models, Chapman and Hall,
1983.

[11] Miller, A.J., Subset Selection in Regression, Chapman and Hall, 1990.
[12] PVM Home Page: http://www.epm.ornl.gov/pvm/pvm_home.html

[13] Osborne, M.R., Solving Least Squares Problems on Parallel Vector Computers,
Mathematics Research Report No. MRR 043-94.

[14] Schumaker, L., Discussion: Multivariate Adaptive Regression Splines, The An-
nals of Statistics, 19, 1, 1991, 112-113,

[15] Stone, G., Analysis of Motor Vehicle Claims Data using Statistical Data Mining,
CSIRO Technical Report, CMIS-97/73, 1997.

[16] Wahba, G., Spline Models for Observational Data, STAM, Philadelphia, 1990.

17

