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Abstract

big Data” as a term has been 
among the biggest trends of the 
last three years, leading to an 

upsurge of research, as well as industry 
and government applications. Data is 
deemed a powerful raw material that 
can impact multidisciplinary research 
endeavors as well as government and 
business performance. The goal of this 
discussion paper is to share the data 
analytics opinions and perspectives of 
the authors relating to the new oppor-
tunities and challenges brought forth 
by the big data movement. The authors 
bring together diverse perspectives, 
coming from different geographical 
locations with different core research 
expertise and different affiliations and 
work experiences. The aim of this 
paper is to evoke discussion rather than 
to provide a comprehensive survey of 
big data research.

1. Introduction
Big data is one of the “hottest” phrases 
being used today. Everyone is talking 
about big data, and it is believed that 
science, business, industry, government, 
society, etc. will undergo a thorough 
change with the influence of big data. 
Technically speaking, the process of 
handling big data encompasses collec-

tion, storage, transportation and exploi-
tation. It is no doubt that the collection, 
storage and transportation stages are 
necessary precursors for the ultimate 
goal of exploitation through data 
analytics, which is the core of 
big data processing.

Turning to a data ana-
lytics perspective, we note 
that “big data” has come 
to be defined by the 
four V’s—Volume, Veloc-
ity, Veracity, and Variety. 
It is assumed that either 
all or any one of them 
needs to be met for the 
classification of a problem 
as a Big Data problem. Vol-
ume indicates the size of the 
data, which might be too big to be 
handled by the current state of algo-
rithms and/or systems. Velocity implies 
data are streaming at rates faster than 
that can be handled by traditional algo-
rithms and systems. Sensors are rapidly 
reading and communicating streams of 
data. We are approaching the world of 
quantified self, which is presenting data 
that was not available hitherto. Veracity 
suggests that despite the data being 
available, the quality of data is still a 
major concern. That is, we cannot 
assume that with big data comes higher 
quality. In fact, with size comes quality 
issues, which needs to be either tackled 
at the data pre-processing stage or by 

the learning algorithm. Variety is the 
most compelling of all V’s as it is present-
ing data of different types and modalities 
for a given object in consideration.

Each of the V’s is certainly not 
new. Machine learning and 

data mining researchers have 
been tackling these issues 
for decades. However, the 
emergence of Internet-
based companies has 
challenged many of the 
traditional process-ori-
ented companies—they 
now need to become 

knowledge-based com-
panies dr iven by data 

rather than by process.
The goal of this article is to 

share the authors’ opinions about 
big data from their data analytics per-
spectives. The four authors bring quite 
different perspectives with different 
research experiences and expertise, 
spanning computational intelligence, 
machine learning, data mining and sci-
ence, and interdisciplinary research. 
Authors represent academia and indus-
try across four different continents. This 
diversity brings together an interesting 
perspective and coverage on exploring 
data analytics in the context of today’s 
big data.

It is worth emphasizing that this arti-
cle does not intend to provide a compre-
hensive review about the state-of-the-art 
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of big data research, nor to provide a 
future big data research agenda. The aim 
is to expose the authors’ personal opin-
ions and present their perspectives of the 
future based on their views. As such 
there will be necessarily limited eviden-
tial argument or literary support, given 
the rapidly changing landscape and sig-
nificant lag of academic research report-
ing. Indeed, many important issues and 
relevant techniques are not specifically 
covered in this article, and are best left to 
survey papers.

While all authors have contributed 
to the overall paper, each author has 
focused on their particular specialities in 
the following discussions. Zhou covers 
machine learning, while Chawla brings 
a data mining and data science perspec-
tive. Jin provides a view from computa-
tional intelligence and meta-heuristic 
global optimization, and Williams draws 
upon a machine learning and data min-
ing background applied as a practicing 
data scientist and consultant to industry 
internationally.

2. Machine Learning with Big Data
Machine learning is among the core 
techniques for data analytics. In this 
section we will first clarify three com-
mon but unfortunately misleading 
arguments about learning systems in 
the big data era. Then we will discuss 
some issues that demand attention.

2.1. Three Misconceptions

2.1.1. “models are not  
Important any more”
Many people today talk about the 
replacement of sophisticated models by 
big data, where we have massive 
amounts of data available. The argument 
goes that in the “small data era” models 
were important but in the “big data era” 
this might not be the case.

Such arguments are claimed to be 
based on empirical observations of the 
type illustrated in Fig. 1. With small data 
(e.g., data size of 10), the best model is 
about x% better than the worst model 
in the figure, whereas the performance 
improvement brought by big data (e.g., 
data size of 104) is y% & x%. Such 

observations can be traced over many 
years, as in [7], and predate the use of 
“big data.” It is interesting to see that in 
the “big data era”, many people take 
such a figure (or similar figures) to claim 
that having big data is enough to get 
better performance. Such a superficial 
observation, however, neglects the fact 
that even with big data (e.g., data size of 
104 in the figure), there are still signifi-
cant differences between the different 
models—models are still important.

Also, we often hear such arguments: 
As the figure shows, the simplest model 
with small data achieves the best per-
formance with big data, and thus, one 
does not need to have a sophisticated 
model because the simple model is 
enough. Unfortunately, this argument is 
also incorrect.

First, there is no reason to conclude 
that the worst-performing model on the 
small data is really the “simplest”, and 
vice versa. Second, even if we assumed 
that the worst-performing model on the 
small data is really the simplest one, 
there is no support for the generaliza-
tion of the argument that the simplest 
model will definitely achieve the best 
performance with big data in tasks other 
than the current empirical study.

If we take a look into [7] we can find 
that Algo_1 in Fig. 1 corresponds to a 
memory-based method, Algo_2 corre-
sponds to Perceptron or Naïve Bayes, 
and Algo_3 corresponds to Winnow. It is 
hard to conclude that Winnow is sim-
pler than the memory-based method; at 
least, the “simpler will be better” argu-
ment cannot explain why the perfor-
mance of a Perceptron is better than that 
of the memory-based method on big 
data. A more reasonable explanation as 
to why the memory-based method is 
better on small data than Winnow but 
worse on big data may owe to its 
requirement of loading the data into 
memory. This is a memory issue and not 
whether a model is sophisticated or not.

The recent interest in deep learning 
[10], [26] provides strong evidence that 
on big data, sophisticated models are 
able to achieve much better perfor-
mance than simple models. We want to 
emphasize that the deep learning tech-

niques are not really new, and many 
ideas can be found from the 1990’s 
[25], [32]. However, there were two 
ser ious problems that encumbered 
development at that time. First, the 
computational facilities available at that 
time could hardly handle models with 
thousands of parameters to tune. Cur-
rent deep learning models involve mil-
lions or even billions of parameters. 
Second, the data scale at that time was 
relatively small, and thus models with 
high complexity were very likely to 
overfit. We can see that with the rapid 
increase of computational power, train-
ing sophisticated models becomes more 
and more feasible, whereas the big data 
size greatly reduces the overfitting risk 
of sophisticated models. From this 
sense, one can even conclude that in 
the big data era, sophisticated models 
become more favored since simple 
models are usually incapable of fully 
exploiting the data.

2.1.2. “Correlation Is Enough”
Some popular books on big data, 
including [37], claim that it is enough 
to discover “correlation” from big data. 
The importance of “causality” will be 
over taken by “correlation”, with some 
advocating that we are entering an “era 
of correlation”.

Trying to discover causality repre-
sents a great intention of searching for 
an in-depth understanding of the data. 
This is usually challenging in many real 
domains [44]. However, we have to 
emphasize that correlation is far from 
sufficient, and the role of causality can 
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never be replaced by correlation. The 
reason lies in the fact that one invests in 
data analytics because one wants to get 
information helpful for making wiser 
decisions and/or taking suitable actions, 
whereas the abuse of correlation will be 
misleading or even disastrous.

We can easily find many examples, 
even in classic statistical textbooks, illus-
trating that correlation cannot replace 
the role of causality. For example, em-
pirical data analysis on public security 
cases in a number of cities disclosed that 
the number of hospitals and the num-
ber of car thefts are highly positively 
correlated. Indeed, car thefts increase al-
most linearly with the construction of 
new hospitals. With such a correlation 
identified, how would the mayor react 
to reduce car thefts? An “obvious” solu-
tion is to cease the construction of new 
hospitals. Unfortunately, this is an abuse 
of the correlation information. It will 
only decrease the opportunity of pa-
tients getting timely medical attention, 
whereas it is extremely unlikely to have 
anything to do with the incidence of 
car thefts. Instead, the increase of both 
the incidence of car thefts and the 
number of hospitals is actually affected 
by a latent variable, i.e., the residential 
population. If one believes that correla-
tion is sufficient and never goes deeper 
into analysis of the data, one might 
serve as a mayor who plans to reduce 
car thefts by restricting the construction 
of hospitals.

Sometimes computational chal-
lenges may encumber the discovery of 
causality, and in such cases, discovering 
valid correlation, will be able to pro-
vide some helpful information. How-
ever, exaggerating the importance of 
“correlation” and taking the replace-
ment of causality by correlation as a 
feature of the “big data era” can be det-
rimental, and lead to unnecessary, nega-
tive consequences.

2.1.3. “previous methodologies Do 
not Work any more”
Another popular argument claims that 
previous research methodologies were 
designed for small data and they can-
not work well on big data. This argu-

ment is often held by people who are 
highly enthusiastic for newly proposed 
techniques, thus they seek “totally 
new” paradigms.

We appreciate the search for new 
paradigms as this is one of the driving 
forces for innovative research. However, 
we highlight the importance of “past” 
methodologies.

Firstly, we should emphasize that 
researchers have always been trying to 
work with “big” data, such that what is 
regarded as big data today might not be 
regarded as big data in the future (e.g., 
in ten years). For example, in a famous 
article [31], the author expressed that 
“For learning tasks with 10,000 training 
examples and more it becomes impossible 
...”. The title of the paper “Making 
Large-Scale SVM Training Practical” 
implies that the goal of the article was 
“large-scale”—the experimental datasets 
in the paper mostly contained thousands 
of samples, and the biggest one con-
tained 49,749 samples. This was deemed 
as “amazingly big data” at that time. 
Nowadays, few people will regard fifty 
thousand samples as big data.

Secondly, many past research meth-
odologies still hold much value. We 
might consider [60], the proceedings of 
a KDD 1999 workshop. On the second 
page it is emphasized that “implementa-
tion ... in high-performance parallel and dis-
tributed computing ... is becoming crucial for 
ensuring system scalability and interactivity 
as data continues to grow inexorably in size 
and complexity”. Indeed, most of the 
“current” facilitation for handling big 
data, such as high-performance comput-
ing, parallel and distributed computing, 
high efficiency storage, etc., has been 
used in data analytics for many years and 
will remain popular into the future.

2.2. Opportunities and Challenges
It is difficult to identify “totally new” 
issues brought about by big data. None-
theless, there are always important 
aspects to which one hopes to see great-
er attention and efforts channeled.

First, although we have always been 
trying to handle (increasingly) big data, 
we have usually assumed that the core 
computation can be held in memory 

seamlessly. Whereas the current data size 
reaches to such a scale that the data 
becomes hard to store and even hard for 
multiple scans. However, many impor-
tant learning objectives or performance 
measures are non-linear, non-smooth, 
non-convex and non-decomposable 
over samples. For example, AUC (Area 
Under the ROC Curve) [24], and their 
optimizations, inherently require 
repeated scans of the entire dataset. Is it 
learnable by scanning the data only 
once, and if it needs to store something, 
the storage requirement is small and 
independent to data size? We call this 
“one-pass learning” and it is important 
because in many big data applications, 
the data is not only big but also accu-
mulated over time, hence it is impossible 
to know the eventual size of the dataset. 
Fortunately, there are some recent efforts 
towards this direction, including [22]. 
On the other hand, although we have 
big data, are all the data crucial? The 
answer is very likely that they are not. 
Then, the question becomes can we 
identify valuable data subsets from the 
original big dataset?

Second, a benefit of big data to 
machine learning lies in the fact that 
with more and more samples available 
for learning, the risk of overfitting 
becomes smaller. We all understand that 
controlling overfitting is one of the 
central concerns in the design of 
machine learning algorithms as well as 
in the application of machine learning 
techniques in practice. The concern 
with overfitting led to a natural favor 
for simple models with less parameters 
to tune. However, the parameter tuning 
constraints may change with big data. 
We can now try to train a model with 
billions of parameters, because we have 
sufficiently big data, facilitated by pow-
erful computational facilities that enable 
the training of such models. The great 
success of deep learning [10] during the 
past few years serves as a good show-
case. However, most deep learning work 
strongly relies on engineering tricks 
that are difficult to be repeated and 
studied by others, apart from the 
authors themselves. It is important to 
study the myster ies behind deep 
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learning; for example, why and when 
some ingredients of current deep learn-
ing techniques, e.g., pretraining and 
dropout, are helpful and how they can 
be more helpful? There have been some 
recent efforts in this direction [6], [23], 
[52]. Moreover, we might ask if it is 
possible to develop a parameter tuning 
guide to replace the current almost-
exhaustive search?

Third, we need to note that big data 
usually contains too many “interests”, 
and from such data we may be able to 
get “anything we want”; in other words, 
we can find supporting evidence for 
any argument we are in favor of. Thus, 
how do we judge/evaluate the “find-
ings”? One important solution is to 
turn to statistical hypothesis testing. The 
use of statistical tests can help at least in 
two aspects: First, we need to verify that 
what we have done is really what we 
wanted to do. Second, we need to ver-
ify that what we have attained is not 
caused by small perturbations that exist 
in the data, particularly due to the non-
thorough exploitation of the whole 
data. Although statistical tests have been 
studied for centuries and have been 
used in machine learning for decades, 
the design and deployment of adequate 
statistical tests is non-trivial, and in fact 
there have been misuses of statistical 
tests [17]. Moreover, statistical tests suit-
able for big data analysis, not only for 
the computational efficiency but also 
for the concern of using only part of 
the data, remain an interesting but 
under-explored area of research. 
Another way to check the validity of 
the analysis results is to derive interpre-
table models. Although many machine 
learning models are black-boxes, there 
have been studies on improving the 
comprehensibility of models such as 
rule extraction [62]. Visualization is 
another important approach, although it 
is often difficult with dimensions higher 
than three.

Moreover, big data usually exists in a 
distributed manner; that is, different 
parts of the data may be held by differ-
ent owners, and no one holds the entire 
data. It is often the case that some 
sources are crucial for some analytics 

goal, whereas some other sources pose 
less importance. Given the fact that dif-
ferent data owners might warrant the 
analyzer with different access rights, can 
we leverage the sources without access 
to the whole data? What information 
must we have for this purpose? Even if 
the owners agree to provide some data, 
it might be too challenging to transport 
the data due to its enormous size. Thus, 
can we exploit the data without trans-
porting them? Moreover, data at differ-
ent places may have different label qual-
ity, and may have significant label noise, 
perhaps due to crowdsourcing. Can we 
do learning with low quality and/or 
even contradictory label information? 
Furthermore, usually we assume that the 
data is identically and independently dis-
tributed; however, the fundamental i.i.d. 
assumption can hardly hold across differ-
ent data sources. Can we learn effec-
tively and efficiently beyond the i.i.d. 
assumption? There are a few preliminary 
studies on these important issues for big 
data, including [34], [38], [61].

In addition, given the same data, dif-
ferent users might have different 
demands. For example, for product rec-
ommendation, some users might 
demand that highly recommended items 
are good, and some users might demand 
that all the recommended items are 
good, while other users might demand 
all the good items have been returned. 
The computational, and storage loads of 
big data may be inhibitors to the con-
struction of a model for each of the var-
ious demands separately. Can we build 
one model (a “general model” which 
can be adapted to other demands with 
cheap minor modifications) to satisfy the 
various demands? Some efforts have 
been reported recently in [35].

Another long-standing but unre-
solved issue is, in the “big data era”, can 
we really avoid the violation of privacy 
concerns [2]? This is actually a long-
standing problem that still remains open.

3. Data Mining/Science  
with Big Data
Aspects of big data have been studied 
and considered by a number of data 
mining researchers over the past decade 

and beyond. Mining massive data by 
scalable algorithms leveraging parallel 
and distributed architectures has been a 
focus topic of numerous workshops and 
conferences, including [1], [14], [43], 
[50], [60]. However, the embrace of the 
Volume aspect of data is coming to a 
realization now, largely through the 
rapid availability of datasets that exceed 
terabytes and now petabytes—whether 
through scientific simulations and 
experiments, business transactional data 
or digital footprints of individuals. 
Astronomy, for example, is a fantastic 
application of big data driven by the 
advances in the astronomical instru-
ments. Each pixel captured by the new 
instruments can have a few thousand 
attributes and translate quickly to a pet-
ascale problem. This rapid growth in 
data is creating a new field called Astro-
informatics, which is forging partner-
ships between computer scientists, 
statisticians and astronomers. The emer-
gence of big data from various domains, 
whether in business or science or 
humanities or engineering, is presenting 
novel challenges in scale and provenance 
of data, requiring a new rigor and inter-
est among the data mining community 
to translate their algorithms and frame-
works for data-driven discoveries.

A similar caveat also plays with the 
concept of Veracity of data. The issue of 
data quality or veracity has been consid-
ered by a number of researchers [39], 
including data complexity [9], missing 
values [19], noise [58], imbalance [13], 
and dataset shift [39]. The latter, dataset 
shift, is most profound in the case of big 
data as the unseen data may present a 
distribution that is not seen in the train-
ing data. This problem is tied with the 
problem of Velocity, which presents the 
challenge of developing streaming algo-
rithms that are able to cope with shocks 
in the distributions of the data. Again, 
this is an established area of research in 
the data mining community in the 
form of learning from streaming data 
[3], [48]. The key opportunity here is to 
take the academic literature for a test-
drive in real industry settings where 
issues of scale and delivery often super-
sede the desire for accuracy. Depending 
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on the application domain, a simpler 
model might be preferred, even if 
slightly less accurate. However, as dem-
onstrated by the success of deep learn-
ing, computational advances are open-
ing new doors to new opportunities.

The issue with Variety is, undoubt-
edly, unique and interesting. A rapid 
influx of unstructured and multimodal 
data, such as social media, images, 
audio, video, in addition to the struc-
tured data, is providing novel opportu-
nities for data mining researchers. We 
are seeing such data rapidly being col-
lected into organizational data hubs, 
where the unstructured and structured 
cohabit and provide the source for all 
data mining. A fundamental question is 
related to integrating these var ied 
streams or inputs of data into a singular 
feature vector presentation for the tra-
ditional learning algorithms. 

An example of big data that has the 
elements of the four V’s is the social 
media and network data. The last 
decade has witnessed the boom of 
social media/network websites, such as 
Facebook, LinkedIn, and Twitter. 
Together they facilitate an increasingly 
wide range of human interactions that 
also provide the modicums of big data. 
The ubiquity of social networks mani-
fests as complex relationships among 
individuals. It is generally believed that 
the research in this field will enhance 
our understandings of the topology of 
social networks and the patterns of 
human interactions [8], [18], [33], [36], 
[41], [54]. However, such data present 
numerous challenges from provenance 
(individual created data), veracity of data 
as the data is effectively crowd-sourced, 
volume as millions of individual are 
contributing content or making con-
nections, and variety as the data not 
only comprises of the social network 
structure but also content such as text 
and images. 

Our call to the community is to 
reconvene some of the traditional 
methods and identify their performance 
benchmarks on “big data”, and identify 
novel directions for ground-breaking 
research built on the foundations we 
have already developed.

3.1. From Data to Knowledge  
to Discovery to action
Recent times have greatly increased our 
ability to gather massive amounts of 
data, presenting us with an opportunity 
to induce transformative changes in the 
way we analyze and understand data. 
These data exhibit a number of traits 
that have the potential to not only 
complement hypothesis-driven research 
but also to enable the discovery of new 
hypotheses or phenomena from the 
rich data, which could include spatial 
data, temporal data, observational data, 
diverse data sources, text data, unstruc-
tured data, etc.

Data of such extent and longitudinal 
character brings novel challenges for 
data-driven science for charting the path 
from data to knowledge to insight. This 
process of data-guided knowledge dis-
covery will entail an integrated plan of 
descriptive analysis and predictive mod-
eling for useful insights or hypotheses. 
These hypotheses are not just correla-
tional but help explain an underlying 
phenomenon or help validate an 
observed phenomenon.

These discovered hypotheses or pre-
dictive analytics can help inform deci-
sions, which include certain actions that 
can be appropriately weighed by the 
cost and impact of the action. The set of 
alternating hypotheses leads to scenarios 
that can be weighted situationally. Bryn-
jolfsson et al. [11] studied 179 large 
companies and found that the compa-
nies that embraced data-driven decision 
making experienced a 5 to 6 percent 
higher level of productivity. The key dif-
ference was that these companies relied 
on data and analytics rather than solely 
on experience and intuition.

Healthcare is another area witnessing 
a significant application of big data. 
United Healthcare, for example, is 
expending effort on mining customer 
attitudes as gleaned from recorded voice 
files. The company is leveraging natural 
language processing along with text data 
to identify the customer sentiment and 
satisfaction. It is a clear example of tak-
ing disparate big data, developing analyt-
ical models, and discovering quantifiable 
and actionable insights.

Big data presents unparalleled oppor-
tunities: to accelerate scientific discovery 
and innovation; to improve health and 
well-being; to create novel fields of 
study that hitherto might not have been 
possible; to enhance decision making by 
provisioning the power of data analytics; 
to understand dynamics of human 
behavior; and to affect commerce in a 
globally integrated economy.

3.2. Opportunities and Challenges
Big data is clearly presenting us with 
exciting opportunities and challenges in 
data mining research.

First, data-driven science and discov-
ery should try to discover action-ori-
ented insights that lead to charting new 
discoveries or impacts. Without under-
standing the nuances of one’s data and 
the domain, one can fall into the chasm 
of simple and misleading correlation, 
sometimes leading to false discovery and 
insight. It is critical to fully understand 
and appreciate the domain that one is 
working in, and all observations and 
insights to be appropriately structured in 
that domain. It requires immersion of an 
individual in a domain to conduct fea-
ture engineering, data exploration, 
machine learning, and to inform system 
design and database design, and to con-
duct what-if analysis. This is not to say 
that a data scientist will be an expert in 
every aspect. Rather a data scientist may 
be an innovator in machine learning but 
well-versed in system design or data-
bases or visualization or quick prototyp-
ing. But the data scientist cannot be 
divorced from the domain less they risk 
the peril of failing. To lead data-driven 
discoveries in an application domain 
requires deep curiosity, capability to ask 
big questions, and bring in diverse data 
sources, in addition to the technological 
and data science chops.

Second, algorithms are important, 
but before we jump on a journey of 
novel algorithms to tackle the four V’s of 
big data, it is important for the commu-
nity to consider the advances done hith-
erto, conduct a thorough empirical sur-
vey of them and then identify the 
potential bottlenecks, challenges and pit-
falls of the existing state-of-the-art. 
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Moreover, it might be a bigger gain to 
consider an additional data source while 
considering a simpler algorithm in the 
interest of answering questions about a 
domain. It is about completing the pic-
ture, after all.

Third, any advances in scalable algo-
rithms should be tied to the advances in 
architecture, systems, and new database 
constructs. We are witnessing a shift 
towards technologies such as NoSQL 
and Hadoop, given the schema-free 
environment of the new data types and 
the prevalence of unstructured data. It is 
an opportunity for the algorithmic 
researchers to collaborate with systems/
database researchers to integrate the 
machine learning or data mining algo-
rithms as part of the pipeline to natu-
rally exploit the lower constructs of data 
storage and computational fabric.

Fourth, a fundamental paradigm that 
is present in front of us is data-driven 
discovery. The data scientist must be the 
curious outsider who can ask questions 
of data, poke at the limitations placed on 
the available data and identify additional 
data that may enhance the performance 
of the algorithms at a given task. The 
hypothesis here is that there may be data 
external to the data captured by a given 
company, which may provide significant 
value. For example, consider the prob-
lem of predicting readmission for a 
patient on discharge. This problem of 
reducing readmission may find signifi-
cant value by considering lifestyle data, 
which is outside of the patient’s Elec-
tronic Medical Record (EMR).

We see these as some of the key 
opportunities and challenges that are 
specifically presented within the data 
mining with big data research context.

4. Global Optimization  
with Big Data
Another key area where big data offers 
opportunity and challenges is global 
optimization. Here we aim to optimize 
decision variables over specific objec-
tives. Meta-heuristic global search meth-
ods such as evolutionary algorithms 
have been successfully applied to opti-
mize a wide range of complex, large-
scale systems, ranging from engineering 

design to reconstruction of biological 
networks. Typically, optimization of such 
complex systems needs to handle a vari-
ety of challenges as identified here [12].

4.1. Global Optimization  
of Complex Systems
Complex systems often have a large 
number of decision var iables and 
involve a large number of objectives, 
where the correlation between the 
decision variables may be highly non-
linear and the objectives are often con-
flicting. Optimization problems with a 
large number of decision variables, 
known as large-scale optimization prob-
lems, are very challenging. For example, 
the performance of most global search 
algorithms will seriously degrade as the 
number of decision variables increases, 
especially when there is a complex cor-
relational relationship between the 
decision variables. Divide-andconquer 
is a widely adopted strategy to deal 
with large-scale optimization where the 
key issue is to detect the correlational 
relationships between the decision vari-
ables so that correlated relationships are 
grouped into the same sub-population 
and independent relationships grouped 
into different sub-populations.

Over the past two decades, meta-
heuristics have been shown to be effi-
cient in solving multi-objective optimi-
zation problems, where the objectives 
are often conflicting with each other. 
The main reason is that for a popula-
tion-based search method, different indi-
viduals can capture different trade-off 
relationships between the conflicting 
objectives, e.g., in complex structural 
design optimization [12]. As a result, it is 
possible to achieve a representative sub-
set of the whole Pareto-optimal solution 
by performing one single run, in partic-
ular for bior tri-objective optimization 
problems. Multi-objective optimization 
meta-heuristics developed thus far can 
largely be divided into three categories, 
namely weighted aggregation based 
methods [28], Pareto-dominance based 
approaches [16] and performance indi-
cator-based algorithms [5].

Unfortunately, none of these meth-
ods can work efficiently when the num-

ber of objectives becomes much higher 
than three. This is mainly because the 
number of total Pareto-optimal solu-
tions becomes large and achieving a rep-
resentative subset of them is no longer 
tractable. For the weighted aggregation 
approaches, it can become difficult to 
create a limited number of weight com-
binations to represent the Pareto-opti-
mal solutions of a very high-dimension. 
For the Pareto-based approaches, most 
solutions in a population of a limited 
size are non-comparable. Thus, only few 
individuals dominate others and selec-
tion pressure for better solutions is lost. 
An additional difficulty is the increas-
ingly large computational cost for per-
forming the dominance relations when 
the number of objectives increases. Per-
formance indicator-based approaches 
also suffer from high computational 
complexity, e.g., in calculating the 
hyper-volume.

The second main challenge associ-
ated with optimization of complex sys-
tems is the computationally expensive 
processes of evaluating the quality of 
solutions. For most complex optimiza-
tion problems, either time-consuming 
numerical simulations or expensive 
experiments need to be conducted for 
fitness evaluations. The prohibitively 
high computational or experimental 
costs make it intractable to apply global 
population-based search algorithms to 
such complex optimization problems. 
One approach that has been shown to 
be promising is the use of computation-
ally efficient models, known as surro-
gates, to replace part of the expensive 
fitness evaluations [29]. However, con-
structing sur rogates can become 
extremely challenging for large-scale 
problems with very limited data samples 
that are expensive to collect.

Complex optimization problems are 
often subject to large amounts of 
uncertainties, such as varying environ-
mental conditions, system degeneration, 
or changing customer demand [29]. 
Two basic ideas can be adopted to 
address the uncertainties in optimiza-
tion. One is to find solutions that are 
relatively insensitive to small changes in 
decision variables or fitness functions, 
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known as robust optimal solutions [29]. 
However, if the changes are large and 
continuous, meta-heuristics for tracking 
the moving optima will often be devel-
oped, which is known as dynamic opti-
mization [42]. Different from the 
robustness approach to handling uncer-
tainties, dynamic optimization aims to 
track the optimum whenever it 
changes. Theoretically this sounds per-
fect, but practically it is not desired for 
two reasons. First, tracking a moving 
optimum is computationally intensive, 
particularly if the fitness evaluations are 
expensive. Second, a change in the 
design or solution may be expensive 
and frequent changes are not allowed in 
many cases. To take these two factors 
into account, a new approach to cope 
with uncertainties, termed robustness 
over time, has been suggested [30]. The 
main idea is to reach a realistic trade-off 
between finding a robust optimal solu-
tion and tracking the moving optimum. 
That is, a design or solution will be 
changed only if the solution currently 
in use is no longer acceptable, and a 
new optimal solution that changes 
slowly over time, which is not necessar-
ily the best solution in that time instant, 
will be sought.

4.2. Big Data in Optimization
Meta-heuristic global optimization of 
complex systems cannot be accom-
plished without data generated in 
numerical simulations and physical 
experiments. For example, design opti-
mization of a racing car is extremely 
challenging since it involves many sub-
systems such as front wing, rear wing, 
chassis and tires. A huge number of 
decision variables are involved, which 
may seriously degrade the search perfor-
mance of meta-heuristics. To alleviate 
this difficulty, data generated by aerody-
namic engineers in their daily work will 
be very helpful to determine which 
subsystem, or even as a step further 
which part of the subsystem, is critical 
for enhancing the aerodynamic and 
drivability of a car. Analysis and mining 
of such data is, however, a challenging 
task, because the amount of data is huge, 
and the data might be stored in different 

forms and polluted with noise. In other 
words, these data are fully characterized 
by the four V’s of big data. In addition, as 
fitness evaluations of racing car designs 
are highly time-consuming, surrogates 
are indispensable in optimization of rac-
ing vehicles.

Another example is the computa-
tional reconstruction of biological gene 
regulatory networks. Reconstruction of 
gene regulatory networks can be seen as 
a complex optimization problem, where 
a large number of parameters and con-
nectivity of the network need to be 
determined. While meta-heuristic opti-
mization algorithms have been shown to 
be very promising, the gene expression 
data for reconstruction is substantially 
big data in nature [51]. Data available 
from gene expression is increasing at an 
exponential rate [59]. The volume of 
data is ever increasing with develop-
ments in next generation sequence 
techniques such as high-throughput 
experiments. In addition, data from 
experimental biology, such as microarray 
data, is noisy, and gene expression exper-
iments rarely have the same growth 
conditions and thus produce heteroge-
neous data sets. Data variety is also sig-
nificantly increased through the use of 
deletion data, where a gene is deleted in 
order to determine its regulatory targets. 
Perturbation experiments are useful in 
reconstruction of gene regulatory net-
works, which, however, are another 
source of variety in biological data. Data 
collected from different labs for the 
same genes in the same biological net-
work are often different.

It also becomes very important to 
develop optimization algorithms that 
are able to gain problem-specific 
knowledge dur ing optimization. 
Acquisition of problem-specific knowl-
edge can help capture the problem 
structure to perform more efficient 
search. For largescale problems that 
have a large number of objectives, such 
knowledge can be used to guide the 
search through the most promising 
search space, and to specify preferences 
over the objectives so that the search 
will focus on the most important trade-
offs. Unfortunately, sometimes only 

limited a-priori knowledge is available 
for the problem to be solved. It is 
therefore also interesting to discover 
knowledge from similar optimization 
problems or objectives that have been 
previously solved [20]. In this case, 
proper re-use of the knowledge can be 
very challenging. The relationship 
between the challenges in complex sys-
tems optimization and the nature of big 
data is illustrated in Fig. 2.

4.3. Opportunities and Challenges
As discussed above, big data is widely 
seen as essential for the success of the 
design optimization of complex systems. 
Much effort has been dedicated to the 
use of data to enhance the performance 
of meta-heuristic optimization algo-
rithms for solving large-scale problems in 
the presence of large amounts of uncer-
tainties. It is believed that the boom in 
big data research can create new oppor-
tunities as well as impose new challenges 
to data driven optimization. Answering 
the following questions can be central to 
converting the challenges posed by big 
data into opportunities.

First, how can we seamlessly inte-
grate modern learning and optimization 
techniques? Many advanced learning 
techniques, such as semi-supervised 
learning [63], incremental learning [15], 
active learning [47] and deep learning 
[10] have been developed over the past 
decade. However, these techniques have 
rarely been taken advantage of within 
optimization with few exceptions, and 
they are critical in acquiring domain 
knowledge from a large amount of het-
erogeneous and noisy data. For optimi-
zation using meta-heuristics, such 
knowledge is decisive in setting up a 
flexible and compact problem represen-
tation, designing efficient search opera-
tors, constructing high-quality surro-
gates, and refining user preferences in 
multi-objective optimization.

Second, how can we formulate the 
optimization problem so that new 
techniques developed in big data 
research can be more efficiently lever-
aged? Traditional formulation of opti-
mization problems consists of defining 
objective functions, decision variables 
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and constraints. This works perfectly for 
small, well defined problems. Unfortu-
nately, the formulation of complex 
problems is itself an iterative learning 
process. The new approaches to data 
analysis in big data can be of interest in 
simplifying the formation of complex 
optimization problems. For example, 
for surrogates to be used for rank pre-
diction in population-based optimiza-
tion, exact fitness prediction is less 
important than figuring out the relative 
order of the candidate designs. Might it 
be also possible to find meta-decision 
variables that might be more effective 
in guiding the search process than 
using the original decision variables?

Third, how do we visualize the 
high-dimensional decision space as well 
as the high-dimensional solution space 
to understand the achieved solutions 
and make a choice [27], [53]? How can 
techniques developed in big data ana-
lytics be used in optimization?

Overcoming these challenges in a 
big data framework will deliver signifi-
cant advances to global optimization 
over the coming years.

5. Industry, Government and  
Society with Big Data
We have presented above some of the 
technical challenges for research around 
the disciplines impacted and challenged 
by big data. In the end, we must also 

focus on the delivery of benefit and out-
comes within industry, business and gov-
ernment. Over the decades, many of the 
technologies we have covered above, in 
machine learning, data mining, and 
global optimization, have found their 
way into a variety of large-scale applica-
tions. We now ask what are the impacts 
we see today in industry and govern-
ment of big data, how is this affecting 
and changing society, and how might 
these changes affect our research across 
all these disciplines?

In this section we present a perspec-
tive on data analytics from experiences 
in industry and government. The discus-
sion is purposefully presented as a point 
of view of future practice rather than 
presenting a scientifically rigorous argu-
ment. We identify areas where a focus 
from research might deliver impact to 
industry, government and society.

5.1. Decentralizing Big Data
It is useful to reflect that over the past 
two decades we have witnessed an era 
where society has seen the mass collec-
tion of personal data by commercial 
interests and government. As users, we 
have been enticed by significant bene-
fits to hand our data over to these orga-
nizations, and these organizations now 
house the big data that we have come 
to understand as the concept or the 
marketing term of the moment.

Google, Apple and Facebook, 
together with many other Internet 
companies that exist today, provide ser-
vices ranging from the discovery of old 
fr iends to the ability to share our 
thoughts, personal details and daily 
activities publicly. With much of our 
e-mail, our diaries and calendars, our 
photos and thoughts and personal 
activities, now hosted by Google, for 
example, there is tremendous opportu-
nity to identify and deal with a whole-
of-client view on a massive scale. Com-
bine that with our web logs, updates on 
our location and storage of our docu-
ments on Google Drive, and we start to 
understand the massive scope of the 
data collected about each of us, indi-
vidually. These data can be used to bet-
ter target the services advertised to us, 
using an impressive variety of algorith-
mic technologies to deliver new 
insights and knowledge.

Together, these crowdsourced data 
stores entice us to deliver our personal 
data to the data collectors in return for 
the sophisticated services they offer. The 
enticement is, of course, amazingly 
attractive, evidenced by the sheer num-
ber of users in each of the growing 
Internet ecosystems.

The customers that drive this data 
collection by these Internet companies 
are not the users of the services but are, 
for example, commercial advertisers and 
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Figure 2 Relationship between the challenges in complex engineering optimization and the nature of big data.
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government services. The data is also 
made available to other organizations, 
purposefully and/or inappropriately.

As data have been gradually collected 
through centralized cloud services over 
time, there is increasing need for broad 
discussion and understanding of the pri-
vacy, security, and societal issues that 
such collections of personal big data 
present. We have, as a society, reduced 
our focus on these issues and have come 
to understand that the centralized store 
of data is the only way in which we can 
deliver these desirable services.

This concept of a centralized collec-
tion of personal and private data should 
be challenged. The centralized model 
primarily serves the interests of the 
organizations collecting the data—
more so than the individuals. We are 
seeing a growing interest and opportu-
nity to instead turn this centralized 
mode of data collection on its head, 
and to serve the interests of the indi-
viduals first, and those of the organiza-
tions second. The emergence of, for 
example, OwnClowd1 and SpiderOak,2 
as personally hosted or encrypted 
replacements to Google Drive and 
DropBox, demonstrate this trend.

The slowly growing rediscovery of 
the importance of privacy is leading to 
a shakeup of how we store data. We 
will see this leading to some govern-
ments introducing new governance 
regimes for the Internet companies 
over time, and the companies them-
selves beginning to improve upon and 
market the importance of their protec-
tion of our data. We will also begin to 
see a migration of data not being stored 
centrally but being stored with the per-
son about whom the data relates—the 
appropriate data owner. This extreme 
data distribution presents one of the 
greatest challenges to data scientists in 
the near future of big data.

We present below three big data 
challenges that relate to this emerging 
paradigm of extreme data distribution. 
The two initial challenges are the scale 
and the timeliness of our model build-

1http://en.wikipedia.org/wiki/Owncloud
2http://en.wikipedia.org/wiki/Spideroak

ing. The main focus though is the chal-
lenge to society over the coming years 
where data are migrated from central-
ized to such extremely distributed data 
stores. This is one of the more signifi-
cant challenges that will be presented 
in the big data future, and one that has 
major impact on how we think about 
machine learning, data mining and 
global optimization.

5.2. Scaled Down Targeted  
Sub-Models
There has been considerable focus on 
the need to scale up our traditional 
machine learning algorithms to build 
models over the whole of the popula-
tion available—and to build them 
quickly. Indeed, since the dawn of data 
mining [45] a key focus has been to 
scale algorithms. This is what we used 
to identify as the distinguishing charac-
ter istic between data mining (or 
knowledge discovery from databases) 
and the home disciplines of most of the 
algorithms we used: machine learning 
and statistics [56]. Our goal was to 
make use of all the data available, to 
avoid the need for sampling, and to 
ensure we capture knowledge from the 
whole population.

This goal remains with us today, as 
we continue to be obsessed with and 
able to collect data—masses of data—
and thereby introduce new businesses 
and refine old ones. But of course we 
have for the past decades talked about 
big, large, huge, enormous, massive, 
humongous, data. The current fad is to 
refer to it as big data or massive data [40]. 
Irrespective, it is simply a lot of data.

In business and in government our 
datasets today consist of anything from 
100 observations of 20,000 variables, to 
20 million observations of 1,000 vari-
ables, to 1 billion observations of 
10,000 variables. Such large datasets 
challenge any algorithm. While our 
research focus is generally on the algo-
rithms, the challenges presented to the 
data collection, storage, management, 
manipulation, cleansing, and transfor-
mation are often generally much bigger 
(i.e., more time consuming) than pre-
sented by the actual model building.

Challenged with a massive dataset, 
what is the task, in practice, of the data 
scientist? In a future world, the learning 
algorithms will trawl through the mas-
sive datasets for us—they will slice and 
dice the data, and will identify anoma-
lies, patterns, and behaviors. But how 
will this be delivered?

A productive approach will be to 
build on the successful early concept of 
ensemble model building [55], but 
taken to a new massive scale. In practice, 
we are seeing the development of 
approaches that massively partition our 
datasets into many overlapping subsets, 
representing many different subspaces, 
often identifying behavioral archetypes. 
Within these subspaces we can more 
accurately understand and model the 
multiple behaviors exhibited by the 
entities of interest. The idea is not new 
[57] but has received scant attention 
over the years until now when we are 
realizing the need to slice and dice big 
data in sensible ways to uncover these 
multitudes of behavioral patterns. Today 
in industry and government this 
approach is delivering new models that 
are demonstrating surprisingly good 
results based on ensembles of thousands 
of smaller very different local models.

The challenge here is how to identify 
the behavioral subspaces within which 
we build our models. Instead of building 
a scaled predictive model over big data 
we build a community of thousands of 
micro models, which as an ensemble 
operate over the whole population. This 
is done by understanding and dealing 
with the nuances and idiosyncrasies of 
the different sub-populations. It is within 
the much smaller sub-populations where 
the predictive models, for example, are 
built. The final model is then the ensem-
ble of individual models applied to each 
new observation.

A recent successful implementation 
of this approach, deployed in practice, 
has analyzed over 2 million observations 
of 1000 variables to identify 20,000 such 
behavioral subspaces. The subspaces are 
created using a combination of cluster 
analysis and decision tree induction, and 
each subspace is described symbolically, 
each identifying and representing new 
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concepts. The subspaces can overlap—
individual observations can belong to 
multiple subspaces (i.e., a single observa-
tion may exhibit multiple behaviors). 
For each of the 20,000 subspaces, micro 
predictive models can be built, and by 
then combining these into an ensem-
ble—using global optimization of multi-
ple complex objective functions—we 
deliver an empirically effective global 
model, deployed, for example, to risk 
score the whole tax paying population 
of Australia, as they interact online to 
lodge their tax returns.

We can (and no doubt will) con-
tinue to explore new computational 
paradigms like in-database analytics to 
massively scale machine learning and 
statistical algorithms to big data. But the 
big game will be in identifying and 
modeling the multiple facets of the 
variety of behaviors we all individually 
exhibit, and share with sizeable sub-
populations, over which the modeling 
itself will be undertaken.

5.3. right Time, real Time,  
Online analytics
The traditional data miner, in practice, 
has generally been involved in batch-
oriented model building, using machine 
learning and statistical algorithms. From 
our massive store of historical data we 
use algorithms such as logistic regres-
sion, decision tree induction, random 
forests, neural networks, and support 
vector machines. Once we have built 
our model(s) we then proceed to deploy 
the models. In the business context we 
migrate our models into production. 
The models then run on new transac-
tions as they arrive, perhaps scoring each 
transaction and then deciding on a treat-
ment for that transaction—that is, based 
on the score, how should the transaction 
be processed by our systems?

The process is typical of how data 
mining is delivered in many large orga-
nizations today, including government, 
financial institutions, insurance compa-
nies, health providers, marketing, and so 
on. In the Australian Taxation Office, for 
example, every day a suite of data min-
ing models risk score every transaction 
(tax return) received. The Australian 

Immigration Department [4], as another 
example, has developed a risk model 
that assesses all passengers when they 
check-in for their international flight to 
Australia (known as Advance Passenger 
Processing) using data mining models. 
Such examples abound through industry 
and government.

Today’s agile context now requires 
more than this. The larger and older 
organizations, world wide, have tended 
to be much less agile in their ability to 
respond to the rapid changes delivered 
through the Internet and our data-rich 
world. Organizations no longer have the 
luxury of spending a few months build-
ing models for scoring transactions in 
batch mode. We need to be able to assess 
each transaction as the transaction hap-
pens, and to dynamically learn as the 
model interacts with the massive vol-
umes of transactions that we are faced 
with as they occur. We need to build 
models in realtime to respond in real 
time and that learn and change their 
behavior in real-time.

Research in incremental learning is 
certainly not new. Incremental learning 
[15], [46], just-in-time or any-time 
learning [49], and data stream mining 
[21] have all addressed similar issues in 
different ways over the past decades. 
There is now increasing opportunity to 
capitalize on the approach. The question 
continues as to how we can maintain 
and improve our knowledge store over 
time, and work to forget old, possibly 
incorrect, knowledge?

The development of dynamic, agile 
learners working in real-time—that is, 
as they interact with the real world—
remain quite a challenge and will 
remain a central challenge for our big 
data world.

5.4. Extreme Data Distribution:  
Privacy and Ownership
Having considered two intermediate 
challenges around big data, we now 
consider a game-changing challenge. 
The future holds for us the prospect of 
individuals regaining control of their 
data from the hands of the now com-
mon centralized massive stores. We 
expect to see this as an orderly evolution 

of our understanding of what is best for 
society as we progress and govern our 
civil society in this age of big data col-
lection and surveillance and of its conse-
quent serious risk to privacy.

Data ownership has become a chal-
lenging issue in our data rich world. 
Data collectors in the corporate and 
government spheres are learning to effi-
ciently collect increasingly larger hold-
ings of big data. However, with the help 
of civil libertarians, philosophers and 
whistle blowers, society is gradually 
realizing the need for better governance 
over the collection and use of data. 
Recent events like Wikileaks3 and 
Edward Snowden4 help to raise the 
level of discussion that is providing 
insight into the dangers of aggregating 
data centrally—with little regard about 
who owns the data.

We are well-aware of the dangers of 
single points of failure—relying on our 
data held centrally, as massive datasets, 
stored securely, and to be used by the 
data collectors only for the benefit of 
our society, and the individuals of that 
society. Yet, a single point of failure will 
mean that just one flaw or one breach 
can lead to devastating consequences on 
a massive scale. And with ever more 
sophisticated methods of attack, it is 
happening more frequently. Even with-
out sophistication, Snowden has dem-
onstrated that simply having all the data 
stored in one location increases the risks 
significantly, to the detriment of indus-
try, governments, and society as a whole.

After identifying risks. we often 
work towards strategies to mitigate those 
risks. An obvious strategy is to recoil 
from the inherently insecure centraliza-
tion of the collection of data. Personal 
data need to move back to the individu-
als to whom the data belongs. We can 
and should increasingly collect and 
retain such data ourselves, under our 
control, as individuals, reducing the 
overall societal risk.

The services that are so attractive 
and that we have come to rely upon, 
the services provided by Google, Apple, 

3http://en.wikipedia.org/wiki/Wikileaks
4http://en.wikipedia.org/wiki/Edward Snowden
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Facebook, and many other Internet eco-
systems, must still be delivered. The cor-
porations can retain their ability to profit 
from the data, while the data itself is 
retained by the data owners. Under this 
future scenario, instead of centralizing all 
the computation, we can bring the 
computation to intelligent agents run-
ning on our own personal devices and 
communicating with the service provid-
ers. Business models can still be profit-
able and users can regain their privacy.

Our personal data will be locked 
behind encryption technology, and the 
individuals will hold the key to unlock 
the data as they wish. The data will be 
served to our portable smart devices 
where it is decrypted and provides the 
services (mail, photos, music, instant 
messaging, shopping, search, web logs, 
etc.) we require. The data will be hosted 
in these personal encrypted clouds, run-
ning on mesh-network connected com-
modity smart devices. We see the begin-
nings of this change happening now 
with projects like the Freedom Box,5 
OwnCloud, and the IndieWeb, and the 
widespread and massive adoption of 
powerful smartphones!

This view of distributed massive 
data brings with it the challenge to 
develop technology and algorithms that 
work over an extreme data distribution. 
How can we distribute the computa-
tion over this extreme level of data dis-
tribution and still build models that 
learn in a big data context?

The challenge of extreme distrib-
uted big data and learning is one that 
will quickly grow over the next few 
years. It will require quite a different 
approach to the development of 
machine learning, data mining and 
global optimization. Compare this 
approach to how we might view soci-
ety functioning through an ensemble of 
humans—we are each personally a 
store of a massive amount of data and 
we share and learn from and use that 
data as we interact with the world and 
with other humans. So must the learn-
ing algorithms of the future.

5http://en.wikipedia.org/wiki/FreedomBox

5.5. Opportunities and Challenges
Identifying key challenges of big data 
leads one to question how the future of 
data collection might evolve over the 
coming years. As the pendulum reaches 
the limit of centralized massive data col-
lection, in time, and possibly sooner than 
we might expect, we will see the pen-
dulum begin to swing back. It must 
swing back to a scenario where we 
restore data to the ownership and con-
trol of the individuals about whom the 
data relates. The data will be extremely 
distributed, with individual records dis-
tributed far and wide, just as the data 
owners are distributed far and wide 
across our planet.

With an extreme data distribution 
we will be challenged to provide the 
services we have come to expect with 
massive centralized data storage. Those 
challenges are surely not insurmount-
able, but will take considerable research, 
innovation, and software development 
to deliver.

The first challenge presented then 
becomes one of appropriately partition-
ing big data (eventually massive extreme 
distributed data), to identify behavioral 
groups within which we learn, and to 
even model and learn at the individual 
level. The second challenge is to refocus 
again on delivering learning algorithms 
that self-learn (or self-modify) in real-
time, or at least at the right time, and to 
do this online. Finally, how do we 
deliver this in the context of extreme 
data distribution where the database 
records are now distributed far and wide 
and are privacy protected, and how we 
might deliver learning agents that look 
after the interests of their “owner”.

6. Wrap Up
From the data analytics perspectives we 
have presented here, there are many new 
opportunities and challenges brought by 
big data. Some of these are not necessar-
ily new, but are issues that have not 
received the attention that they deserve. 
Here we recall some of the important/
interesting issues:

 ❏ Data size: On one hand, we devel-
op “one-pass learning” algorithms 
that require only one scan of the 

data with limited storage irrelevant 
to data size; on the other hand, we 
try to identify smaller partitions of 
the really valuable data from the 
original big data.

 ❏ Data variety: Data presents itself in 
varied forms for a given concept. It 
is presenting a new notion to learn-
ing systems and computational 
intelligence algorithm for classifica-
tion, where the feature vector is 
multi-modal, with structured and 
unstructured text, and still the 
notion is to classify one concept 
from another. How do we create a 
feature vector, and then a learning 
algor ithm with an appropr iate 
objective function to learn from 
such varied data?

 ❏ Data trust: While data is rapidly 
and increasingly available, it is also 
important to consider the data 
source and if the data can be trusted. 
More data is not necessarily correct 
data, and more data is not necessarily 
valuable data. A keen filter for the 
data is a key.

 ❏ Distributed existence: Owners of 
different parts of the data might war-
rant different access rights. We must 
aim to leverage data sources without 
access to the whole data, and exploit 
them without transporting the data. 
We will need to pay attention to the 
fact that different sources may come 
with different label quality, there may 
be serious noise in the data due to 
crowd-sourcing, and the i.i.d. assump-
tion may not hold across the sources.

 ❏ Extreme distribution: Taking this 
idea even further, the unit-level data 
may be what we see as the level of 
data distribution, as we deal with 
issues of privacy and security. New 
approaches to modeling big data will 
be required to work with extreme 
distributed data.

 ❏ Diverse demands: People may 
have diverse demands whereas the 
high cost of big data processing may 
disable construction of a separate 
model for each demand. Can we 
build one model to satisfy the vari-
ous demands? We also need to note 
that, with big data, it is possible to 



 novEmbEr 2014 | IEEE ComputatIonal IntEllIgEnCE magazInE    73

find supporting evidence to any 
argument we want; then, how to 
judge/evaluate our “findings”?

 ❏ Sub-Models: Diverse demands 
might also relate to diversity of the 
behaviors that we are modeling 
within our application domains. 
Rather than one single model to 
cover it all, the model will consist of 
ensembles of a large number of 
smaller models that together deliver 
better understandings and predictions 
than the single, complex model.

 ❏ Intuition importance: Data is 
going to power novel discoveries and 
action-oriented business insights. It is 
important to still attach intuition, 
curiosity and domain knowledge 
without which one may become 
myopic and fall in the chasm of 
“correlation is enough”. Computa-
tional intelligence should be tied 
with human intuition.

 ❏ Rapid model: As the world contin-
ues to “speed up”, decisions need to 
be made more quickly because 
fraudsters can more quickly find new 
methods in an agile environment, 
model building must become more 
agile and real-time.

 ❏ Big optimization: Global optimiza-
tion algorithms such as meta-heuris-
tics have achieved great success in 
academic research, but have rarely 
been employed in industry. One 
major obstacle is the huge computa-
tional cost required for evaluating the 
quality of candidate designs of com-
plex engineering systems. The emerg-
ing big data analytic technologies will 
remove the obstacle to a certain 
degree by reusing knowledge extract-
ed from the huge amount of high-
dimensional, heterogeneous and noisy 
data. Such knowledge can also be 
acquired with new visualization tech-
niques. Big data driven optimization 
will also play a key role in reconstruc-
tion of large-scale biological systems. 

 ❏ Complex optimization: Defini-
tion of decision variables, setup of 
the objectives and articulation of the 
constraints are three main steps in 
formulating optimization problems 
before solving them. For optimiza-

tion of complex systems, formulation 
of the optimization problem itself 
becomes a complex optimization 
problem. The big data approach 
might provide us new insights and 
methodologies for formulating opti-
mization problems, thus leading to a 
more efficient solution.
In closing the discussion, we empha-

size that the opportunities and chal-
lenges brought by big data are very 
broad and diverse, and it is clear that no 
single technique can meet all demands. 
In this sense, big data also brings a 
chance of “big combination” of tech-
niques and of research.
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