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Abstract: This paper describes temporal data mining techniques for extracting infor-
mation from temporal health records consisting of a time series of elderly diabetic pa-
tients’ tests. Diabetes is one of the most common diseases affecting quality of life and
is potentially life threatening for elderly people in developed countries. We propose a
data mining procedure to analyse these time sequences in three steps to identify pat-
terns from any longitudinal data set. The first step is a structural-based search using
wavelets to find pattern structures. The second step employs a value-based search over
the discovered patterns using the statistical distribution of data values. The third step
combines the results from the first two steps to form a hybrid model. The hybrid model
has the expressive power of both wavelet analysis and the statistical distribution of the
values. Global patterns are therefore identified.

Keywords: temporal data mining, discrete-valued time series, similar patterns, period-
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1 Introduction

Temporal data mining is concerned with discovering qualitative and quantitative pat-
terns in temporal databases or in discrete-valued time series (DTS) datasets. Recently
two threads have been studied in temporal data mining:

1. The similarity problem: finding fully or partially similar patterns in a DTS, and
2. The periodicity problem: finding fully or partially periodic patterns in a DTS.

Although there are various results to date on discovering periodic and similar pat-
terns in discrete-valued time series datasets (e.g., [3]), a general theory and general
method of data analysis for discovering patterns from DTS is not well known. In this pa-
per we describe a new framework for discovering patterns from temporal health records
by using wavelet analysis and a data regression function. There are three steps. The first
step of the framework employs of a distance measure and wavelet analysis to discover
structural patterns (shapes). Coarse shapes of patterns are identified from the DTS and
grouped into a wavelet model by the Nearest Neighbour (NN) algorithm employing a
distance measure. In the second step the degree of similarity and periodicity between
the extracted patterns is measured based on the data value distribution models. The third
step of the framework consists of a hybrid model for discovering global patterns based
on results of the first two steps.



The paper is organised as follows. Section 2 discusses related work. Section 3 de-
scribes our Wavelets Feature Model (WFM). Section 4 briefly explains the background
of the application, describes the application of the approach to a real-world dataset and
discuss the results. The final section concludes the paper with a brief summary.

2 Related Work

According to the principle of general pattern mining from a dataset we can classify
objectives in pattern searching into three categories:

1. Create representations in terms of algebraic systems with probabilistic superstruc-
tures intended for the representation and understanding of patterns in nature and
science.

2. Analyse the regular structures from the perspective of mathematical theory.
3. Apply regular structures to particular applications and implement the structures by

algorithms and code.

In recent years various studies have proposed algorithms for searching different
kinds of and/or different levels of patterns. These studies have only covered one or
sometimes two of the above categories. For example, most researchers use statisti-
cal techniques such as Metric-distance based techniques, Model-based techniques, or
a combination of techniques (e.g, [8], [16]) to search different pattern problems such as
in periodic pattern searching (e.g, [7, 9]) or in similar pattern searching (e.g, [5]).

Some studies have covered the above three categories for searching patterns in data
mining. For instance, Agrawal et al. [1] presents a “shape definition language”, called
SDL, for retrieving objects based on shapes contained in the histories associated with
these objects. Das et al. [4] describes adaptive methods which are based on similar
methods for finding rules and discovering local patterns and Baxter et al. [2] have con-
sidered three alternative feature vectors for representing variable-length patient health
records.

In this paper we differentiate our approach in two ways. First, we use a statistical
language to perform the search. Second, we divide the data sequence, or data vector
sequence, into two groups: the structure based groups and the pure value based groups.

In the structure-based grouping our techniques are a combination of the work of
Agrawal at al. [1] and Baxter et al. [2]. With this grouping we use a distance measuring
function on the structural wavelet’s based sequences, similar to the work of Berger
in [14]. Alternatively we could use a model-based clustering method on the state-space
S (such as Snob as used in [2]) to find clusters but it does not facilitate the understanding
of the pattern distribution within the dataset.

In the value-based grouping we apply statistical techniques such as a frequency dis-
tribution function to deal with the actual values in relation to their structural distribution.
This is similar to the work of Das et al. [4] but it benefits from combining significant
information of the two groups to gather information underlying the dataset.
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3 Wavelete’s Feature-based Pattern Mining

This section presents our temporal data mining model in searching and analysing pat-
terns from a DTS using the wavelet feature-based regression models (WFMs). For an
analysis of a real-world temporal dataset which may contain different kinds of patterns,
such as complete and partial similar patterns and periodic patterns, we consider two
groupings of the data sequence separately. These two groupings are: (1) structure-based
grouping and, (2) pure value-based grouping. For structural pattern search we consider
the data sequence as a finite-state structural vector sequence applying a distance mea-
sure function in wavelet feature analysis. To discover pure value-based patterns we use
data regression techniques on the data values. We then combine the results from both to
obtain the final wavelet feature-based regression models (WFMs).

3.1 Definitions, Basic Models and Properties

We first give a definition of DTS and then provide some definitions and notation to be
used later.

Definition 1 Suppose{Ω,Γ,Σ} is a probability space andT is a discrete-valued time
index set. If for anyt ∈ T , there exists a random variableξt(ω) defined on{Ω,Γ,Σ},
then the family of random variables{ξt(ω), t ∈ T} is called adiscrete-valued time
series (DTS).

We assume that for every successive pair of time points in the DTSti+1 - ti = f(t)
is a function (in most cases,f(t) = constant). For every sequence of three time points:
Xi−1, Xi andXi+1, the triple (Yi−1, Yi, Yi+1) has only nine distinct states (or nine
local features), as enumerated in Figure 1, depending on whether the values increase,
decrease or stay the same over the two time steps.

i - 1X

X i + 1

(s2)

(s1)

i + 1 X

X

X

X

(s9)

i + 1X (s6)

(s5)i + 1X

X i

X i

X i

X i + 1 (s3)

X i + 1 (s4)

i + 1 (s7)

i + 1(s8)

i + 1

Fig. 1.S = {s1, s2, s3, s4, s5, s6, s7, s8, s9}
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Definition 2 In this framework supposeSs represents the same state as the previous
state,Su represents an increase over the previous state, andSd represents a decrease
over the previous state. LetS = {s1, s2, s3, s4, s5, s6, s7, s8, s9} = {(Yj , Su, Su), (Yj ,
Su, Ss), (Yj , Su, Sd), (Yj , Ss, Su), (Yj , Ss, Ss), (Yj , Ss, Sd), (Yj , Sd, Su), (Yj , Sd, Ss),
(Yj , Sd, Sd) }. ThenS is thestate-space.

A sequence is called afull periodic sequenceif every point contributes (precisely or
approximately) to the cyclic behaviour of the overall time series (that is, there are cyclic
patterns with the same or different periods of repetition).

A sequence is called apartial periodic sequenceif the behaviour of the sequence is
periodic at some but not all points in the time series.

Haar’s Wavelet Function We choose the simplest basis function of the wavelet system—
theHaar wavelet basis function—in this paper. Our use of Haar’s wavelet function is
limited to standard results taken from a well established literature. More details on the
Haar wavelet function can be found in any standard wavelet textbook, including [15].
The Haar function was developed in 1910 [6] (and often called themother wavelet) is
given by:

ψ(x) =

1 if 0 ≤ x < 1
2

−1 if 1
2 ≤ x < 1

0 otherwise.
(1)

If f is a function defined on the whole real line then for a suitably chosenmother
wavelet functionψ we can expandf as:

f(t) =
∞∑

j=−∞

∞∑
k=−∞

wjk2−j/2ψ(2−jt− k) (2)

where the functionsψ(2−jt− k) are orthogonal to one another andwjk is the discrete
wavelet transform (DWT) defined as

wjk =
∫ ∞

−∞
f(t)2−j/2ψ(2−jt− k)dt (3)

wherej andk are integers,j is a scale variable andk is a translation variable.

The Mahalanobis distance FunctionIn a distributional space (e.g., state space, prob-
ability space), two conditional distributions with similar covariance matrices and very
different means are so well separated that the Bayes probability of error is small. In
this paper, we use Mahalanobis distance functions which are provided by a class of
positive semidefinite quadratic forms. Specifically, ifu = (u1 , u2 , · · · , up) andv =
(v1 , v2 , · · · , vp) denote twop-dimensional observations of each different distance of
patterns in the same distributional space on objects that are to be assigned to two of the
g pre-specified groups, then, for measuring the Mahalanobis distance betweenu andv
we can consider the function:

D2(i) = (ū− v̄)T
∑−1

(ū− v̄) (4)

whereū = Eu, v̄ = Ev are means, and
∑

is a covariance matrix.

4



Local Linear Model We consider the bivariate data (X1, Y1), . . . ,(Xn, Yn), which
forms an independent and identically distributed sample from a population (X, Y ). For
given pairs of data(Xi, Yi), i = 1, 2, . . . , N , we can regard the data as being generated
from the model:

Y = m(X) + σ(X)ε (5)

whereE(ε) = 0,V ar(ε) = 1, andX andε are independent. For an unknown regression
function m(x), applying a Taylor expansion of orderp in a neighbourhood ofx0 with its
remainderϑp,

m(x) =
p∑

j=0

m(j)(x0)
j!

(x− x0)j + ϑp ≡
p∑

j=0

βj(x− x0)j + ϑp. (6)

The first stage of methods for detecting the characteristics of those records is to use
linear regression. We may assume the linear model isY = Xβ + ε. The linear model
based upon least square estimation (LSE) isβ̂ = (XT X)−1XT Y. Then we have:̂β ∼
N(β,Cov(β̂)). Particularly, forβ̂i, we haveβ̂i ∼ N(βi, σi

2), whereσi
2 = σ2aii, and

aii is theith diagonal element of(XT X)−1.

3.2 Mining Global Patterns From a Database

For any dataset we divide the dataset into two parts: the qualitative part and the quan-
titative part. The qualitative part is based on the above state space for structural pattern
searching and the quantitative part is based on probability space for statistical pattern
searching.

We may view the structural base as a set of a vector sequences{S1, · · · ,Sm}, where
eachSi = (s1, s2, · · · , sp)T denotes thep-dimensional observation on an object that is
to be assigned to a prespecified group.

For qualitative pattern searching we first use multiresolution analysis (decomposi-
tion) with a Haar wavelet, then we apply the Mahalanobis distance functions on the
state-spaceSj = {s1j , s2j , · · · , smj} of S.

For quantitative pattern searching we only consider the structural relationship be-
tween the response variableY and the vector of covariatesX = (t,X1, . . . , Xn)T . By
Taylor expansion we may fit a linear model as above and parameters can be estimated
underLSE. The problem can then be formulated as the data distribution functional
analysis of a discrete-valued time series.

We combine the above two kinds of pattern discovery to discover global information
from a temporal dataset. For the structure group let the structural sequence{St : t ∈
N} be data functional distribution sequence on the state-space{s1, s2, . . . , sN}. Then
suppose the pure valued data sequence is a nonnegative random vector process{Vt; t ∈
N} such that, conditional onS(T ) = {St : t = 1, . . . , T}, the random vector
variables{Vt : t = 1, . . . , T} are mutually independent.

4 An Application in Health Care Data

The dataset used in this study is Australian Medicare data. Medicare is the Australian
Government’s universal health care system covering all Australian citizens and res-
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idents. Each medical service performed by a medical practitioner is covered by the
Medicare Benefits Scheme (MBS) and is recorded in the MBS database as a trans-
action. This dataset has been collected and stored since the inception of Medicare in
1975. Such a massive collection of data provides an extremely valuable resource of
information. We present a case study on using our data mining techniques to analyse
the medical service profiles of diabetes, a common disease in the senior population in
Australia. This study complements a recent study of the time sequence dataset using a
vector feature approach [2]. Similar to that study we use a subset of de-identified data
(to protect privacy) based on Medicare transactions from Western Australia (WA) for
the period 1994 to 1998. Our particular focus is on the patterns of care related to elderly
diabetes patients (over 65 years of age).

Three monitoring medical tests for diabetes treatment are given in Table 1. These
are essential for controlling the condition of diabetic patients.1 Glycated hemoglobin
measurements (Gl) provide information about the accumulated effect of glucose lev-
els. Ophthalmologic examinations (Op) are important in the early identification and of
complications related to eye sight. Cholesterol measurements via lipid studies (Ch) help
identify possible complications relating to heart conditions.

Abbrev Description Guidelines
Gl Quantitation of glycosylated hemoglobin.2–4 times per year
Op Ophthalmologic examination. Every 1-2 years
Ch Cholestorol measurement via lipid studies.Every year

Table 1.Types of services received by Patients and indicative guidelines.

4.1 Experimental Results

The data used in this paper was extracted from the Medicare transactional database.2

We used a subset of the de-identified data based on Medicare transactions from Western
Australia (WA) for the period 1994 to 1998 inclusive. The sample data includes 4916
elderly diabetic patients. We have only limited demographic information about each
patient, such as age, gender and location. For each patient we also have the sequence of
diabetes-related monitoring tests they have received over the time interval. We identified
clusters in which patterns associated with nine states for diabetes patients were found.

We study each of the three tests separately to find out how a patient’s treatment
follows the guidelines. We also study the overall patterns which take all three tests into
consideration. To this end we summarise all the events (the tests performed) into eight
distinct types of events which are listed in Table 2. A sample patient record is illustrated
in Figure 2. For example, the patient has taken test 6 (i.e., Op and Ch) in early 1994,
followed by a test 5 (i.e., Gl and Ch) and so on.

Through this experiment we are interested in investigating the following issues
which are of interest to medical experts with particular interest in changes to patterns
of care in the management of Diabetes over time:
1 The Health Insurance Commission of Australiahttp://www.hic.gov.au .
2 All experiments were done on a Unix system and under Windows NT with the prototype writ-

ten in Awk and MATLAB.
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Test groupDescriptionTest group Description
test 0 No test test 4 Gl and Op
test 1 Gl only test 5 Gl and Ch
test 2 Op only test 6 Op and Ch
test 3 Ch only test 7 Gl, Op and Ch

Table 2.Eight possible test combinations tests for patients

1994 1995 1996 1997 1998

test6 *
test5  *

test5 *
test3 *test1 *

test5 

test1 test1 test1 test1test3 * test3 *
test2 *

*

test1* *
*

test5* 

test6 * 

test5 * 

*test1* **

Fig. 2.A sample patient’s health record, showing the seven types of tests received over five years.

– Does there exist any temporal patternPt for all patients who have one, two, or three
tests regularly?

– What features are there for those temporal patterns? and
– Does there exist any temporal subpattern inPt or between patternsPt’s?

Modelling DTS We assume that for each successive pair of time points in a DTS we
haveti+1 - ti = c (a unit constant). For mining temporal patterns from a real-world
dataset we usetime gapas the time variable between events (e.g., the same test group)
instead of natural time (e.g., day) between different events. For example, a patient
record is given in Table 3.

Test group The day of test group taken Time gap between the same test group
1 1 time gap = 1
1 191 time gap = 190
2 331 time gap = 1
7 487 time gap = 1
2 779 time gap = 448
1 894 time gap = 703
6 947 time gap = 1

Table 3.A patient test group transactional record with time gap.

From Table 3 we apply pattern searching on state-space and use time gap as variable
for each test group for structural pattern searching. This means that we may view the
structural base as a set of vector sequence:S9×m = {S1, · · · ,Sm}, where eachSi =
(s1i, s2i, · · · , s9i)T denotes the 9-dimensional observation on an object that is to be
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assigned to a prespecified group. Then the problem of structural pattern discovery for
the sequence and its each subsequenceSij = {si1, si2, · · · , sij : 1 ≤ i ≤ 9, 1 ≤ j ≤
m} of S on finite-state space can be formulated as a Haar’s function with Mahalanobis
distance model.

Then we may also view the value-point process data asN -dimensional data set3:
V = {V1, · · · ,Vm}, where eachVi = (v1i, v2i, · · · , vNi)T , where theN is dependent
on how many statistical values relate to the structural base pattern searching. Then the
problem of value-point pattern discovery can be formulated as stochastic distribution of
the sequence and its subsequencesVj = {v1j , v2j , · · · , vNj} of a discrete-valued time
series4.

On structural pattern searching We are investigating the data structural base to test
naturalness of the similarity and periodicity on Structural Base distribution. We consider
seven test groups in the state-space for structural distribution:S = {s1, s2, . . . , s9}.
For finding all levels patterns(or clusters), we applied Haar’s function (Equation 1) and
distance function (Equation 4) on three-dimensional dataset for structural based pattern
researching in state-space. First dimension is the test group, second dimension is the
time gap between each test group and the third dimension is the time gap within the
same test group.

For example for test group one and test group nine, in Figure 4, theX-axis represents
the distribution frequency of test groups (e.g., in first dimension), theY-axis represents
distribution of time gap frequency between test groups (e.g., in second dimension) and
theZ-axis represents distribution of frequency of time gap between the same test groups
in state-space (e.g., in third dimension). Now we interpret an important result from the
structural pattern searching: There exist similar time gap frequency patterns between
and/or within state one and state nine for all test groups, this means, for example, pattern
of patients not taking any test is similar to the pattern of patients taking test group one
and test group two with the time gap increasing (or, decreasing).

We found some other results such as (1) there exist similar time gap frequency
patterns between and/or within state two and state six for all test groups: the meaning
is that the patients have not been given good care by doctors according to the clinical
guidelines and (2) there exist similar and periodic time gap frequency patterns between
state three and state seven for all test groups: the reason for the pattern is that the patients
have been given good care by doctors according to the clinical guidelines.

In Figure 5, thex-axis represents natural integer sequenceN and they-axis rep-
resents the time gap for each state. Figure 5 explains some important facts: first that
there exists the same time gap statistical distribution (e.g., the same tangent curve dis-
tribution) between the test group 1, test group 2, test group 3 and test group 5. It also
explains visits to doctors are stationary in different time gaps for those four types of
test groups. Second, there exists a hidden periodic distribution which corresponds to
patterns on the same state with different distances, this means patients visit their doc-

3 According to their structural distribution model
4 In fact, many practical problems in temporal data mining related to statistical modelling are

explained in the context of regression models.

8



0

1

2

3

4

0

5

10

15
0

2

4

6

8

10

12

14

16

X−axis

state one in state−space

Y−axis

Z−
ax

is

0

1

2

3

4

0
2

4
6

8
10

12
0

2

4

6

8

10

12

X−axis

state nine in state−space

Y−axis

Z−
ax

is

0
2

4
6

8
10

12
14

0

5

10

15

20

25
0

5

10

15

20

X−axis

state three in state−space

Y−axis

Z−
ax

is

0
2

4
6

8
10

12
14

0

5

10

15

20
0

2

4

6

8

10

12

14

16

18

X−axis

state seven in state−space

Y−axis

Z−
ax

is

Fig. 3. All test groups of all patients in state-space one s1 and nine s9, state-space three s3 and
seven s7.

tors periodically and third there exist partial periodic patterns on and between some test
group in state-space.

On value-point pattern searching We now illustrate our new method to analyse the
value-point sequence of health temporal records for searching patterns. In these records,
since each patient record length is different, we can only use their statistical value as
variables in regression functions (e.g., frequency distribution functions). In the light of
our structural base experiments, we have the series

Yt = f testgroupi
t (vt)− f testgroupj

t (vt) (7)

wheref testgroupi
t (vt) is a frequency distribution function, its variablevt is the time gap

between the same state (e.g.,vt = state kt1 - state kt2), in the same cluster. Then the
observations can be modelled as a linear regression function,

Yt = f testi
t (vt)− f testj

t (vt) + εt, t = 1, 2, . . . , N (8)

and we also consider theε(t) as an auto-regressionAR(2) model

εt′ = aεt′−1 + bεt′−2 + et′ (9)

wherea, b are constants dependent on sample dataset, andet′ with a small variance
constant which can be used to improve the predictive equation.
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Fig. 4.Plot of the time gap within each test group for all 8 test groups in 1,875 business days.

In top of Figure 6 thex-axis represents the frequency of time gap between the same
states and they-axis represents the time gap between the same statesk. This explains
two facts: (1) there exists a Poisson distribution for each of test group 1 and test group 5.
This means that period of the medical treatment for test group 1 and test group 5 is sta-
tionary independent increment. And (2) there exist the same patterns between two test
groups with small distance shiftting, this means that patients have received treatment
for test group 1 or test group 5 by the guidelines.

Left hand of bottom of Figure 6 shows that there exists an exponential distribution
for test group 2. This means that the patient has a problem and is receiving treatment
for the identification or control of the problem and in botton of Right hand of bottom
of Figure 6 shows that there exists a geometric distribution for test group 3. This means
that patients have received a regular treatment.

4.2 Mining Global Patterns

According to the above analysis in the health data record, let{St : St ∈ S, t ∈ N} be
a structural process representingstate k occurrence, and{Vt : t ∈ N} be the corre-
sponding observed values, then we have the distribution ofVt conditional onSt given
by

P(Vt = v|St = i) = pt
vi (10)

For test group 1 and test group 5,V testgroup1
t andV testgroup5

t both have Poisson dis-
tribution with meansλtestgroup1

i andλtestgroup5
i . Two states satisfy

V testgroup1
t = αV testgroup5

t + θt (11)

Then the conditional mean ofVt and state-dependent probabilities given for all non-
negative integersvt will be (it is the same as 7, 8)

µ(t) =
∑m

i=1 λiWt(t),

Pvt,statek = e−λi,vt
λi,vt

vt!

(12)
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Fig. 5. Top: Time distance frequency distribution of test group 1 and test group 5 are Poisson
distributions. Bottom: Time distance frequency distribution of test group 2 is an exponential dis-
tribution (Left) and Time distance frequency distribution of test group 3 is a geometric distribution
(Right).

For test group 2,V testgroup2
t is an exponential distribution with parametersλtestgroup2

i

andµtestgroup2
i . Then the conditional exponential distribution ofV testgroup2

t and state-
dependent probabilities given for all non-negative integersvt will be

µ(t) =
∑m

i=1 λiWt(t),

Pvt,test2 =
{
λ(i,vt)e

(−λ(i,vt)(vt−µ)) vt > µ
0 vt < µ

(13)

For test group 3,V testgroup3
t is a geometric distribution with parameterptestgroup3

i .
Then the conditional geometric distribution ofV testgroup3

t and state-dependent proba-
bilities given for all non-negative integersvt will be

µ(t) =
∑m

i=1 λiWt(t),

Pvt,testgroup3 = pstatek
i,vt

(1− pstatek
i,vt

)(vt−1)
(14)

Test group 4, test group 6 and test group 7 are indepentent states. We use Haar func-
tion and local polynomial function for each of them to find their conditional distribution
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functionftestgroupk(t). We found that there exist some similar patterns between each
of their state but no patterns exist between each of their clusters of time gap, this means
the patients have received number of treatments from test groupk (k = 4, 6, 7) similar
but for different time periods.

The main results from structural pattern seaching and value-point pattern searching
are:

– The behaviour of visiting doctors for pattients with just a diabetic is a Poisson
distribution, the meaning is that number of doctor visits by diabetic group people
in the same of period(e.g., within 7 days) have the same distribution.

– The distribution of visiting pattern(taking tests) between the patient that has taken
more care and less care is log-normal distribution, the meaning is that the num-
ber of doctor visits is not symmetric around the mean, but much extending to the
right(e.g., pattern of less care)

– The other main combined-results on the health dataset are as follows:
1. There does exist some full periodic pattern within and between state 1 and state

5, this means the time gap between patients taking test 1, and time gap between
patients taking test 1 & test 3 are both stationary.

2. There exist some partial periodic patterns between state 1, state 2, state 3 and
state 5, this means the patients have sub-common problem such as they all have
eye problem( e.g., taking more eye test, etc.).

3. There also exist some similar patterns between state 1, state 2, state 3 and state
5. This means there exists similar patterns of behaviour for patients visiting
their doctors but for different tests.

In [2] three alternative feature vectors for representing variable-length patient health
records were used. An interesting observation from there is that the average, residual,
and deviance clusters have similar mean average and deviance values, but differ in their
residual value. This shows the value of using the residual feature to identify intensive
patterns of care during a relatively short time interval. In our approach, using a tempo-
ral data mining method, we can find results (e.g., interesting patterns and unexpected
patterns).

5 Concluding Remarks

This paper has presented a new approach based on hybrid models to form new models
of application of data mining. The rough decision for pattern discovery comes from the
structural level that is a collection of certain predefined similar patterns. The clusters
of similar patterns are computed in this level by the choice of certain distance mea-
sures. The point-value patterns are decided in the second level and the similarity and
periodicity of a DTS are extracted. In the final level, we combine structural and value-
point pattern searching into the wavelet’s feature-based regression models (WFMs) to
obtain a global pattern picture and understand the patterns in a dataset better. Another
approach to find similar and periodic patterns has been reported in [10, 11, 13, 12]; there
the models used are based on hidden functional analysis. However, we have found that
using different models at different levels produces better results.
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The method guarantees finding different patterns if they exist with structural and
valued probability distribution of a real-dataset. The results of preliminary experiments
are promising.
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