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Abstract. In this paper we consider three alternative feature vector
representations of patient health records. The longitudinal (temporal),
irregular character of patient episode history, an integral part of a health
record, provides some challenges in applying data mining techniques.
The present application involves episode history of monitoring services
for elderly patients with diabetes. The application task was to examine
patterns of monitoring services for patients. This was approached by
clustering patients into groups receiving similar patterns of care and
visualising the features devised to highlight interesting patterns of care.

1 Introduction

We are interested in the problem of clustering individuals given observed data
about the individuals where the observed data does not naturally occur in vec-
tor form. Clustering algorithms are typically applied to data in vector form. For
example, we may have k-measurements on a set of patients and so the mea-
surements on each individual i are represented as a k-dimensional vector. For
vector-form data well-known and widely-applied clustering techniques can be
applied. Such techniques are generally model-based methods include mixture
modelling [6], or distance-based methods [3].

Much real world data is actually in non-vector form consisting of observa-
tions of an individual, recording information at particular time points. Such
variable-length event sequence data is described in Sect. 2, but examples include
a patient’s usage of medical services and an individual’s stock trading behaviour.
The data is characterised as irregular events where each event may encapsulate
a different type of action.

The data mining practitioner wishing to cluster event sequence data appears
to have three options. The first option is to convert the event sequence data into
feature vectors [4]. A problem with this approach is that information is inevitably
lost in the vectorisation process. The second option is to use a distance-based
clustering method which allows for non-vector data. An edit-distance metric [5]
which uses insert, delete and replace operations to turn one sequence into another
is an example of this approach. A difficulty here is in defining an effective distance
metric. A suitable distance metric needs to be created for each new application.
The third option is the use of mixtures of a generative probabilistic model [2, 1].
This is an attractive approach but not further explored here.



We chose the first option for the application described in this paper. An aim
was to minimise the loss of information relevant to the data mining objectives
in choosing the feature vectors. We present three alternative feature vectors for
representing medical event sequence data. Our exploration provides insights into
the process of developing alternative feature sets. We identify feature sets that
are useful for clustering event sequence data.

Sect. 2 describes the patient health record data and Sect. 3 describes the
objectives for investigating patterns of care received by patients. Sect. 4 describes
the feature vectors we have used in looking for patterns of care. To the best of
our knowledge two of the three feature vectors we use here are novel. Clustering
results and their visualisations are presented in Sect. 5.

2 Health Care Data

Medicare is the Australian Government’s universal health care system. Each
visit to a medical practitioner or hospital is covered by Medicare and recorded
as a transaction in the Medicare Benefits Scheme (MBS) database. This data
has been collected in Australia since the inception of Medicare in 1975. Such a
massive collection of data provides an extremely rich resource that has not been
fully utilised in the exploration of health care delivery in Australia.

For this current exploration we use a subset of de-identified data (to pro-
tect privacy) based on Medicare transactions from Western Australia (WA) for
the period 1994 to 1998. Our particular focus is on patterns of care related to
diabetes for elderly patients (over 65 years of age). We have only limited demo-
graphic information about each patient, such as age, gender and location. For
each patient we also have the sequence of diabetes-related monitoring tests they
have received over this time interval.

The four monitoring tests included in our dataset are given in Table 1.
Glycated hemoglobin measurements (Gl) provide information about the accu-

Abbrev Description Guidelines

Gl Quantitation of glycosylated hemoglobin. 2–4 times per year
Op Ophthalmologic examination. Every 1-2 years
Ch Cholestorol measurement via lipid studies. Every year
Al Microalbuminuria test Every year

Table 1. Types of services received by Patients and indicative guidelines.

mulated effect of glucose levels. Ophthalmologic examinations (Op) are impor-
tant in the early identification of complications related to eye sight. Cholesterol
measurements via lipid studies (Ch) help identify possible complications relat-
ing to heart conditions. Microalbuminuria tests (Al) provide early indications of
possible future kidney function loss.

A sample patient record is illustrated in Fig. 1. The event sequence data can
be augmented with any available vector based data.
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Fig. 1. A sample patient’s health record, showing the four types of tests received over
five years. The tests are: glycated hemoglobin (Gl); ophthalmology (Op); cholesterol
(Ch); and micro-albuminuria (Al).

3 Patterns of Care in the Management of Diabetes

An important area in health population research is the investigation of patterns
of care received by patients. Are there distinct patterns of care for these diabetes
patients? Are there groups of patients receiving similar patterns of care? Are the
patterns of care related to their doctor? Do patients of different age or gender
or location receive differing patterns of care to other patients?

We have some prior expectations about the desired patterns of care for el-
derly patients with diabetes. The Australian National Health and Medical Re-
search Council (NHMRC) publishes clinical guidelines for looking after patients.
Patients with diabetes are at risk of developing complications such as eye prob-
lems, loss of kidney function and circulatory problems. The clinical guidelines
recommend monitoring services, such as those in Table 1, be carried out at cer-
tain regular intervals. There is no compulsion for general practitioners to adhere
to these guidelines and the guidelines cannot be expected to be appropriate for
everyone.

To complicate matters, published clinical guidelines can differ in their details
from state to state, and from country to country. We use the NHMRC guidelines
as our starting point, but refer to other guidelines where they differ and where
they may have an effect on clinical practice in Western Australia.

For example, according to NHMRC guidelines, glycated hemoglobin measure-
ment should be done every six months (or every four months for some guidelines).
Ophthalmologic examinations should be done every two years (or annually for
some guidelines). The cholesterol measurement via lipid studies should be per-
formed once a year. The microalbuminuria test should be done annually.

4 Selecting Features

We now present three methods for mapping the non-vector sequence data onto
feature vectors. The first is the obvious count approach of having one feature for
each type of service representing the number of times the service was used. The
other two methods, which we call average-residual-deviance and the gap, are less
obvious and overcome some shortcomings of the count method.



4.1 Count

In the count feature vector approach we have one feature for each type of service.
Each feature contains the number of services received. The original sequence
data, as shown in Fig. 1, is mapped to the features shown in Table 2. This

Patient Gl Op Ch Al

1 4 5 3 1
2 5 0 0 0
2 1 1 1 1
3 16 20 17 17

Table 2. Count Feature Vectors

feature representation has the advantage of being easily interpretable. However
the obvious loss of information is a concern for the goals of our project. We have
lost information relating to the time between successive services and also to the
overall coverage of the services across the five years. For example, an individual
with a count of 15 for a service appears to be well-monitored, but if those 15
services all occurred in 1994 and none occurred in 1995, 1996, 1997 and 1998,
then that is a pattern we would like to identify.

4.2 Average, Residual, Deviance

We have devised the average, residual, deviance feature vector for capturing the
required temporal information missed by the count feature vector approach.

Let tki,j(i = 1, 2, ...nj) be the date of the ith service for service type j on
patient k and nj be the total number of type j services received by patient
k. Define Tf and Tl to be the beginning and ending dates of the time interval
covered by the study.

Definition 1 (Mean Interval). The Mean Interval, MIj,k, for the patient k
on service j when nj > 0 is defined as :

MIj,k =

∑nj−1
i=1 (tki+1,j − tki,j)

nj − 1
(1)

If nj = 0 then MIj,k = Tf − Tl.

For example, we can calculate the Mean Interval for a patient who had thir-
teen tests for Quantitation of glycosylated hemoglobin on the following dates:

9044, 9272, 9377, 9527, 9592, 9766, 9875, 9985, 10101, 10154, 10334, 10413, 10510
(2)



where, for computational convenience, these dates are expressed as the number
of days since January 1st, 1970. The interval (in days) between two consecutive
tests are then

228, 105, 150, 65, 174, 109, 110, 116, 53, 180, 79, 97 (3)

For this patient we have MIj,k = 228+105+150+65+...+116+53+180+79+97
12 = 122.2.

Definition 2 (Deviation Interval). The Deviation Interval,DIj,k, for patient
k on service j for nj > 0 is defined as:

DIj,k =

√∑nj−1
i=1 (tki+1,j − tki,j −MIj,k)2

nj − 1
(4)

If nj = 0 then DIj,k = Tf − Tl.
For example, using the patient with the health record for a single test given

in Eqn. (2), the Deviation Interval is

DIj,k =

√
(228− 122.2)2 + (105− 122.2)2 + (150− 122.2)2 + ...

12
= 47.9 (5)

Definition 3 (Residual Time). The Residual Time, RTj,k, for patient k on
service j is defined as:

DIj,k = tk1,j − Tf + Tl − tknj ,j (6)

For example, using the patient with the health record given in Eqn. (2), we
have Tf = 8765 (January 1st, 1994) and Tl = 10592 (December 31st, 1997), so
that the Residual Time is DIj,k = 9044− 8765 + 10592− 10510 = 361

The feature Mean Interval measures the average interval between receiving
the same service. The Interval Deviation measures whether the service intervals
are regular or irregular. The third feature provides a way of accounting for the
windowing effects of having data for 5 years only. The time interval from the
window boundary to the time of the first service and from the last service to
the window boundary are not considered in the definition of the first two feature
definitions. The third feature is used to account for these boundary effects.

The feature vector for a service should have reasonably small values for all
three features if the patient is treated according to the clinical guidelines. Typ-
ically, some patients do need more frequent services as their diabetic condition
is serious. We do not consider the possibility of over-servicing by medical prac-
titioners, where more services than are clinically necessary are provided.

Patterns of care contrary to the clinical guidelines can arise from insufficient
numbers of services provided over the five years. This type of pattern is detected
by the count feature vector and by a large Mean Interval value. The average,
residual, deviance feature vector also represents patterns of care where the ser-
vices provided are clustered in time, or are absent near the boundaries of the
time window.

The features are still relatively easy to interpret. However, we now need
twelve features in our present application instead of the four for the count feature
vector.



4.3 Gap

Our third feature vector representation is the most specific to the task of in-
vestigating service patterns with reference to service clinical guidelines. The
motivation is to describe the total length of time when the regular required tests
are not carried out.

Once again, let tki,j(i = 1, 2, ...nj) be the date of the ith service for service
type j on patient k and nj be the total number of type j services received by
patient k. Define Tf and Tl to be the beginning and ending dates of the time
interval covered by the study.

We require that service type j have a desirable gap, DGj , as given by some
clinical guidelines.

Definition 4 (Gap). If patient k has nj = 0 (the patient has no services) then
the gap, Gj,k, is defined as:

Gj,k = Tl − Tf −DGj (7)

If patient k has nj > 0 (the patient has one or more services)

Ginitialj,k =
{
tk1,j − Tf −DGj if tk1,j − Tf > 0
0 otherwise

(8)

The following counts the time intervals between services received:

Gij,k =
{
tki+1,j − tki,j −DGj if tki+1,j − tki,j > DGj
0 otherwise

(9)

We then include the final service interval:

Gfinal =
{
Tl − tknj ,j −DGj if Tl − tknj ,j > DGj
0 otherwise

(10)

The three Gap sub-parts are now summed:

Gj,k = Ginitialj,k +
nj−1∑
i=1

Gij,k +Gfinalj,k (11)

For example, using the patient with the health record given in Eqn. (2), and
assuming that the DG1 = 120 for the Quantitation of glycosylated hemoglobin
test (j = 1). As shown previously, Tf = 8765 and Tl = 10592. The Gap between
Tf and the first test is 9044 − 8765 = 179 which is greater than DG1, so it
contributes 179− 120 = 59 to the sum. There are four time intervals exceeding
DG1 among the 12 time intevals. They are 228, 150, 174 and 180 days respec-
tively. Their contribution to the sum is 108, 30, 54 and 60 days respectively. The
last test was done on day 10510 and the gap between Tl and the last test is
10592 − 10510 = 82, which is less than DG1 and therefore contributes nothing
to the sum. Therefore we have Gj,k = 59 + 108 + 30 + 54 + 60 = 311.

The advantage of this feature vector is that it is low-dimensional and easy
to interpret. This feature is particularly useful when there is an expectation of
regularity in the events and this regularity is to be explored.



5 Results

We used a model-based clustering program called Snob[7, 8] using a Bayesian
mixture-modelling method with a Poisson distribution for the count feature
vectors and a log-normal distribution for the average, residual, deviance feature
vectors.

5.1 Clustering using Count

Fig. 2 gives the means and membership size of the 23 clusters found using Poisson
mixture models. The Poisson distribution was suitable for these features because
the counts are positive integers. Note that the counts are only approximately
Poissson, because very large counts of services do not occur at all in practice.
We now interpret these clusters. First recall that to receive care conforming to
clinical guidelines for the Gl test over five years you would need between 10
and 15 tests. The population mean is 5 tests. It is apparent from Fig. 2 that
most individuals do not receive conforming care because the large membership
clusters (e.g., 4, 5, 6, 7) have mean counts below 6. Only two clusters (e.g., 2
and 20) have means of 10 or more. Cluster 2 individuals do not conform on the
other two tests because they have means less than 3 for Op and Cl. In contrast,
Cluster 20 individuals receive better than conforming care for all three tests.
The 70 individuals in that group are apparently better looked after than all the
others. The next best groups for all three tests are clusters 15, 16 and 17.

In follow-up work we plan to examine the characteristics (e.g., number of GP
consultations, whether they are in the community or a nursing home, number of
days in hospital) of individuals in the very ‘good’ and very ‘bad’ clusters to see
if they can be distinguished from those receiving other patterns of care.

5.2 Clustering using Mean, Residual, Deviance

Fig. 3 gives the means and standard deviations of the 17 clusters found using
log-normal mixture models. The log-normal distribution was suitable for these
features because the mean, residual and standard deviation have positive contin-
uous values. A mean interval of six months or so is indicative of care conforming
to clinical guidelines for the Gl test. Looking at Fig. 3 we see that clusters 3,
6, 7, 8, 9, 10, 15 and 17 have mean intervals less than 10. Cluster 17 has less
than 10 members and so we ignore it for the moment. Individuals in clusters
8 and 9 receive the best patterns of care for this population. The 700 cluster
3 individuals receive regular conforming Cl tests, but very infrequent Op tests.
In follow-up work we hope to characterise these individuals further. It may be
possible to devise a policy to improve their quality of ophthalmology care. Op-
posite to cluster 3, clusters 6, 7 and 9 receive frequent Op tests, but infrequent
Cl tests.

At the other end of the quality of care, the 850 individuals in cluster 16
receive less care than the other individuals in the population.
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Fig. 2. Clustering results based on the count features.
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Fig. 3. Clustering based on /textitaverage, residual, deviance features. Residual and
Deviance features were used in the clustering but are not shown.



We now compare the clustering results from Fig. 3 with those from Fig. 2
using a confusion matrix. The ith row of the confusion matrix contains the mem-
bers of cluster i using Count. The individuals of cluster i are placed in column
j if they belong to cluster j using Average, Residual, Deviance. If the two clus-
tering approaches were identical, then one would expect the confusion matrix to
contain one non-zero entry in each row and column. If the two clustering meth-
ods are independent, then one would expect a relatively uniform distribution of
non-zero entries.

The confusion matrix is shown in Table 3. We see that there are indeed
many zero entries indicating that the two clustering approaches result in related,
but not identical, results. Intuitively, we would expect this if very high residual
values are rare, thus making the count feature values highly correlated with
the average feature values. The most interesting feature is that we consistently
observe that individuals from a count cluster are distributed among one, two or
three average, residual, deviance clusters. On closer examination, the average,
residual, deviance clusters have similar mean average and deviance values, but
differ in their residual value. This shows the value of using the residual feature
to identify intensive patterns of care during a relative short time interval.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 67 1 0 0 18 15 0 0 2 0 0 0 0 0
3 0 0 0 137 51 0 0 0 0 0 0 0 0 0
4 257 183 10 0 0 0 0 0 0 0 0 0 0 0
5 114 0 4 38 38 25 0 0 4 22 3 2 3 8
6 21 0 107 0 0 0 0 0 0 0 1 0 3 27
7 37 0 0 0 0 0 0 0 0 0 0 0 0 13
8 109 0 0 0 0 5 0 0 4 0 0 0 0 0
9 0 0 0 147 10 2 0 0 0 21 0 0 0 1
10 0 0 0 0 80 1 0 0 0 0 0 0 0 0
11 1 77 2 0 24 1 179 21 0 0 0 9 2 0
12 0 0 0 23 36 0 29 0 0 0 0 52 2 0
13 0 0 0 42 37 0 0 0 0 0 0 1 0 0
14 0 27 63 0 0 0 0 0 1 0 0 0 1 0
15 0 0 0 0 17 0 74 0 0 0 0 0 0 0

Table 3. Confusion Matrix. The rows show individuals from a cluster using Count
distributed among the clusters using Average, Residual, Deviance. NB: Clusters 16–23
for Count and clusters 16–17 for Average, Residual, Deviance have been omitted.

5.3 Visualising the Gap

Fig. 4 provides a visualisation of the Gap for three different desired clinical
guideline intervals (DG). The second of the three visualisations presents of Fig.
4 sets DG = 6 months. The distinct mode at zero indicates good conformance
with the guidelines. In all three visualisations there is a mode around 20–24
months, worthy of further investigation: Is there some structural feature in the
health system that has patients receiving this test every two years, rather than
not at all (in the worst case). In general we note a peak at Gap = 0 and another
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Fig. 4. Visualisation of Gl Gap with DG = 3, 6 and 12 months from left to right.

peak at the other end of the scale. These two peaks represent extremes: the
first peak corresponds to conformance while the other peak corresponds to non-
conformance to the guidelines.

Fig. 5 and Fig. 6 provide a visualisation of the Op and Cl tests for two differ-
ent published clinical guideline intervals. At the right extreme are the individuals
who did not receive any tests and so do not conform to the guidelines. At the left
extreme are those individuals who conform to the guidelines. In between we see
how patterns of care slowly degrade in terms of conformity. Note the mode at 12
months on the left-hand side panels (where DG = 12 months). This is indicative
of the population of individuals receiving a precisely conforming pattern of care.
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Fig. 5. Visualisation of Op Gap with DG = 12 and 24 months from left to right.
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Fig. 6. Visualisation of Cl Gap with DG = 12 and 24 months from left to right.

6 Conclusion

We have considered three alternative feature vectors for representing variable-
length patient health records. The feature vector of counts is the simplest, but
can be misleading since it does not capture the distribution of patient care
throughout the data window. The average, residual, variance feature vector over-
comes this problem. For the specific task of characterising relationships to clinical
guidelines, the gap feature vector most directly represents the required informa-
tion. We expect the features created here for event sequence data for this health
application will be applicable to other event sequence data such as trading and
web log data.
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