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Abstract. This study proposes a data mining framework to discover qualitative and
quantitative patterns in discrete-valued time series (DTS). In our method, there are
three levels for mining similarity and periodicity patterns. At the first level, a structural-
based search based on distance measure models is employed to find pattern structures;
the second level performs a value-based search on the discovered patterns using local
polynomial analysis; and then the third level based on hidden Markov-local polynomial
models (HMLPMs), finds global patterns from a DTS set. We demonstrate our method
on the analysis of “Exchange Rates Patterns” between the U.S. dollar and the United
Kingdom Pound.
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1 Introduction

Temporal data mining is concerned with discovering qualitative and quantitative tem-
poral patterns in a temporal database or in a discrete-valued time series (DTS) dataset.
DTS commonly occur in temporal databases (e.g., the weekly salary of an employee, or
a daily rainfall at a particular location). We identify two kinds of major problems that
have been studied in temporal data mining:

1. The similarity problem: finding fully or partially similar patterns in a DTS, and
2. The periodicity problem: finding fully or partially periodic patterns in a DTS.

Although there are various results to date on discovering periodic patterns and sim-
ilarity patterns DTS datasets (e.g. [4]), a general theory and general method of data
analysis of discovering patterns for DTS data analysis is not well known.

Our proposed framework is based on a new model for discovering patterns by using
hidden Markov models and local polynomial modelling. The first step of the framework
consists of a distance measure function for discovering structural patterns (shapes). In
this step, the rough shapes of patterns are only decided from the DTS and a distance
measure is employed to compute the nearest neighbors (NN) to, or the closest candi-
dates of, given patterns among the similar ones selected. In the second step, the degree
of similarity and periodicity between the extracted patterns is measured based on local
polynomial models. The third step of the framework consists of a hidden Markov-local



polynomial model for discovering all levels patterns based on results from the first two
steps.

The paper is organised as follows. Section 2 presents the definitions and basic meth-
ods of hidden Markov models and local polynomial modelling. Section 3 presents our
new method of hidden Markov-local polynomial models (HMLPM). Section 4 applies
new models to “Daily Foreign Exchange Rates” data and section 5 discusses related
work. The final section concludes the paper with a short summary.

2 Definitions and Basic Methods

We first give a definition of what we mean by DTS and some other notations will be
introduced later. The basic models will be given here and studied in detail in the rest of
the paper.

Definition 1 Suppose that
���������	��


is a probability space and � is a discrete-valued
time index set. If for any 
���� there exists a random variable ���	����� defined on������������


then the family of random variables
� ���	����� � 
���� 
 is called a discrete-

valued time series (DTS).

2.1 Definitions and Properties

We consider the bivariate data (  � ��! � ), . . . ,(  #" ��! " ) which form an independent and
identically distributed sample from a population (  ,

!
). For given pairs of data �$ &% ��! %'� ,

for (*),+ ��-.�0/�/0/	��1 , we can regard the data as generated from the model

Y )324� X �65879� X �':
where ;#��:<� = 0, =?>�@A�B:C� = 1, and  and : are independent.

We assume that for every successive pair of two time points in DTS, 
�%ED � - 
F% = GH��
F�
is a function (in most cases, GH��
F� = constant). For every successive three observations:
 JI ,  �I�D � and  �I�D � , the triple value of (

! I , ! I�D � ,
! I�D � ) has only nine distinct states

(called local features) depending on changes in value.
Let state: KML be the same state as the prior one, KMN the go-up state compared with

the prior one and K6O the go-down state compared with the prior one, then we have state-
space P =

�
s1, s2, s3, s4, s5, s6, s7, s8, s9



=
�
(
! I , KQN , KQN ), (

! I , KRN , KML ), (
! I , KQN , KMO ),

(
! I , K L , K N ), (

! I , K L , K L ), (
! I , K L , K O ), (

! I , K O , K N ), (
! I , K O , K L ), (

! I , K O , K O ) 
 .
A sequence is called a full periodic sequence if every point in time contributes

(precisely or approximately) to the cyclic behavior of the overall time series (that is,
there are cyclic patterns with the same or different periods of repetition).

A sequence is called a partial periodic sequence if the behavior of the sequence is
periodic at some but not all points in the time series.

Definition 2 Let ST) � S � � S � ��/0/�/U
 be a sequence. If for every S I �4S , S I �VP , then
the sequence h is called a Structural Base sequence and a subsequence of h is called
a sub-Structural Base sequence. If any subsequence SRLWNYX of S is a periodic sequence,
then SZLWNYX is called a sub-structural periodic sequence, S also is a structural periodic
sequence (existence periodic pattern(s)).



Definition 3 Let � ) � � � � � � �0/�/0/ / 
 be a real valued sequence. Then � is called a value-
point process. For � I with ��� � I�� + (mod 1) for all � , we say that y is uniformly
distributed if every subinterval of [0, 1] gets its fair share of the terms of the sequence
in the long run.

Definition 4 Let � ) � � � � � � �0/0/�/0/ 
 be a sequence of real numbers with �	��
�� ��
 �
��5�
 , for all k, where I is a constant and 
 is an allowable variable parameter. We
say that y has an approximate constant sequence distribution of � ) � � � � ��/0/�/0/ 
 . In
general, if SM�$
F����
�� � 
 � S6��
F� 5�
 for all k, we say that y has an approximate
distribution function h(t).

2.2 Hidden Markov Models (HMMs)

In a hidden Markov model (HMM) an underlying and unobserved sequence of states
follows a Markov chain with a finite state space and the probability distribution of the
observation at any time is determined only by the current state of that Markov chain.
In this subsection we briefly introduce the hidden Markov time series models which is
limited to standard results taken from the literature. We have in particular used those of
Baldi and Brunak [13].

Let
� K ��� 
 � N



be an irreducible homogeneous Markov chain on the state space� + ��-A��/0/0/	� 2 
 , with transition probability matrix � . That is, � ) ��� %UI � , where for all

states ( and � , and times 
 :
�C%UI ) P �ZKQ�9)�����KQ��� � )�(Q�

For
� KQ� 
 , there exists a unique, strictly positive, stationary distribution � = ( � � ,

/�/0/
, ��� ),

where we suppose
� KQ� 
 is stationary, so that � is, for all 
 , the distribution of K*�

Suppose there exists a nonnegative random process
� � �! 
?� N



such that, condi-

tional on K#"%$'&�) � K �(� 
 ) + ��/�/0/ � � 
 , the random variables
� ���(� 
 ) + ��/�/0/ � � 


are mutually independent and, if KR� ) ( , � � takes the value ) with probability * �+ % . That
is, for 
 ) + ��/�/0/0� � , the distribution of ��� conditional on K,"%$-& is given by

P �$� � ).)/� KQ�9)�( � ).* �+ %
where the probabilities * �+ % as the “state-dependent probabilities”. If the probabilities
* �+ % do not depend on 
 , the subscript 
 will be omitted.

2.3 Local Polynomial Models (LPMs)

The key idea of local modelling is explained in the context of least squares regression
models. We use standard results from the local polynomial analysis theory which can be
found from the literature on linear polynomial analysis (e.g, [8]). Recall the data model
function given earlier: Y ) 24� X �M5T79� X �': where ;#�B:C� = 0, =?>�@A�B:C� = 1, and  and :
are independent 1. We approximate the unknown regression function 24�10 � locally by a

1 We always denote the conditional variance of 2 given 3547698 by : �<; 6�8>= and the density of3 by ? ;�@ =



polynomial of order � in a neighbourhood of 0�� ,
24�10Z��� 24�10 � �M582�� �10 � �0�10 ��0 � �M5 /0/�/0� 5 2�"�� &��10	� ���
 �10 � 0 � � � /

This polynomial is fitted locally by a weighted least squares regression problem:

minimize
� "�
%�
 �

� ! % � ��
I�
���� I �� % � 0 � � I


 ����� �� % � 0 � � 
��

where 
 is the same 
 as in definition 4, and
��� ��� � with

�
a kernel function assigning

weights to each datum point 2.

3 Hidden Markov-Local Polynomial models (HMLPMs)

A real-world temporal dataset may contain different kinds of patterns such as com-
plete and partial similarity patterns and periodicity patterns, and complete or partial
different order patterns. There are many different techniques for efficient sequence or
subsequence matching to find patterns in discrete-valued time series database (DTSB)
(e.g, [1]). A limitation of those techniques is also that they do not provide a coher-
ent language for expressing prior knowledge and handling uncertainty in the matching
process. Also the existence of different patterns does not guarantee the existence of an
explicit model.

In this section we introduce our new data mining model for pattern analysis in a
DTS by a combination of the hidden Markov models (HMMs) and local polynomial
models (LPMs), called hidden Markov-local polynomial models (HMLPMs). HMMs
have been successfully used in many applications, such as in isolated word recognition
(see [7]), but they have two major limitations. One is HMMs often have a large number
of unstructured parameters, and the other is they cannot express dependencies between
hidden states. In order to overcome the limitations of HMMs we apply local polynomial
modelling techniques to relax the restrictive form of a HMM. We combine HMMs and
LPMs to form hybrid models that contain the expressive power of artificial LPMs with
the sequential time series aspect of HMMs.

For building up our new data mining model we divide the data sequence or data
vector sequence into two groups: (1) the structural-base data group and (2) the pure
value-based data group. In group one we only consider the data sequence as a 9-state
structural sequence by applying a distance measure function for performing structural
pattern search. In group two, we use local polynomial techniques on the pure value-
based sequence data for discovering pure value-based patterns. Then we combine those
two groups by using hidden Markov models to obtain the final results.

2 In section 4, we choose Epanechnikov kernel function: � ;�� = 4��� ;��! "� � = for our experiments
in pure-value pattern searching.



3.1 Modelling DTS

Without loss of generality we assume that for each successive pair of time points in a
DTS, we have 
F% D � - 
 % = � (a unit constant). According to our method the structural
base sequence and value-point process data model become:

U )324� V �65879� V �':
where U is the number of � I of a given sample sequence.

Firstly we may view the structural base as a set of vector sequence
������� � ��� �����#
 ,

where each
�	� ) ��
C+ � 
 -A� 

� � 
�� � 
�� � 
�� � 
�� � 

� � 

��� $ denotes the � -dimensional obser-

vation on an object that is to be assigned to a prespecified group.
Then we may also view the value-point process model as a local polynomial model:

� ��0Z��) � � 5 � � �10 � 0 � �R5 /0/0/�� 5 � � ��0 ��0 � � � 5 :
/

It is more convenient to work with matrix notation for the solution to the above least
squares problem in section 2.3. Let

X )
��
� +?�$ 

� ��0	� � � ��� �$ "	� 0!�Y� �
...

...
...

+?�$ � ��0	� � � ��� �$ "	� 0!�Y� �
���
� �

and put Y ),� ! � � � ��� ��! " � $ and �� )����� �
� ����� � �� � � $

/
Further, let W be the �! "� diagonal matrix of the weights:

W )$#�(W>&% � � � �� % � 0 � � 
�/
The solution vector is provided by weighted least squares theory and is given by

�� ) � X $ WX � � �
X $ WY

/
Then the problem of value-point pattern discovery can be formulated as the local

polynomial analysis of discrete-valued time series.

3.2 Structural Pattern Discovery

We now introduce an approach to discovering patterns in structural base sequences
which uses a distance measure function with its density estimator.

From the point of view of our method in structural sequence data analysis, we
use squared distance functions which are provided by a class of positive semidefinite
quadratic forms. Specifically, if 'V)��)(+* � (-, � ����� � (/.�� denotes the � -dimensional obser-
vation of each different distance of patterns in a state on an object that is to be assigned
to one of the % prespecified groups, then, for measuring the squared distance between '
and the centroid of the ( th group, we can consider the function [3]0 � �$( � ),�1' �324 �)516 �7' �324 �
where 6 is a positive semidefinite matrix to ensure the

0 � ��( �98 � .



3.3 Point-Value Pattern Discovery

Here we introduce an enhancement to the local polynomial modelling approach through
functional data analysis. On the value-point pattern discovery, given the bivariate data
�� � ��! � � , � ��� , �� " ��! ".� , one can replace the weighted least squares regression function
in section 2.3 by

"�
%�
 �

� ��! %/� ��
I�
���� I��� %/� 0!�Y� I


 ��� �� % ��0	���
where

� � � � is a loss function. For the purpose of predicting future values we use a special
case of the above function with

��� ��
F��) � 
 ��5�� -�� � +�� 
 3.

3.4 Using HMLPMs for Pattern Discovery

For using HMLPMs in pattern discovery we combine the above two kinds of pattern
discovery. In structural pattern searching let the structural sequence

� = � �6
 � N



be
an irreducible homogeneous Markov chain on the state space

� 
�+ � 
 -A��/0/0/	� 

� 
 , with the
transition probability matrix � (see section 2.1 for details).

In value-point pattern searching suppose the pure valued data sequence is a non-
negative random process

��� �  
 � N



such that, conditional on = "%$'& ) � =.� ��
�)+ � /0/0/�� � 
 , the random variables
��� � � 
 ) + � /0/0/�� � 
 are mutually independent

and, if K � ) ( , � � takes the value ) with probability * �+ % . That is, for 
4) + � /0/�/0� � ,
the distribution of

� � conditional on =�"%$'& is given by

P � � �9) ) � = �9)�( � ).* �+ %
Suppose that if = � = ( , � � has a local polynomial distribution with parameters � ��	 �

(a known positive integer) and � % . That is, the conditional local polynomial distribution
of � � has parameters � ��	 � and 2 �$
F� , where

24��
F� )
��
%�
 �

� %�
 %���
F� �

and 
V%��$
F� is, as before, the indicator of the event
� = � ) ( 
 . Then we have “state-

dependent probabilities” for each nine states ( ) ) � � + ��/0/0/0� � ��	 � )
The models

� � � 
 are defined as hidden Markov-local polynomial models. In this
case there are 2 �

parameters: 2 parameters � % or � % , and 2 � � 2 transition proba-
bilities � % I , e.g. the off-diagonal elements of � , to specify the “hidden Markov chain”� K � 
 .

3 This is often called 
������������������������� ! ���"�� .



4 Experimental Results

This section presents selected experimental results. There are three steps of experiments
for the investigation of “Daily Foreign Exchange Rates”4 analysis of “Exchange Rates
Patterns” between the U. S. dollar and the U. K. pound. The data consist of daily ex-
change rate for each business day between 2 January 1971 and 21 June 1999. The time
series is plotted in figure 1.
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Fig. 1. 5764 working days exchange rates between the U. S. dollar and the U. K. pound, since
1971.

4.1 On structural pattern searching

We investigate the sample of the structural base to test naturalness of the similarity
and periodicity on the Structural Base distribution. The size of this discrete-valued time
series is about 5764 points. We consider 9 states in the state-space of structural distri-
bution: P ) � 
C+ � 
 -A� 

� � 
�� � 
�� � 
�� � 
�� � 

� � 

� 
 .

In Figure 2, each point represents the occurence of one of the nine transition states,
retaining the original order of the states. There exist two approximation uniformly dis-
tributed on state 3 and state 7 if the observations are big enough. Figure 2 also explains
two facts: (1) there exists a hidden periodic distribution which corresponds to patterns
on the same line with different distances, and (2) there exist partial periodic patterns on
and between the same lines. To explain this further, we can look at the plot of distances
between the patterns at a finer granularity over a selected portion of the daily exchange
rates. For instance, in the right of Figure 2 the dataset consists of daily exchange rates
for 300 business days starting from 3 January 1983, telling us there exist a number of
partial periodic patterns appearing in each year and, also telling us in each state in a

4 The Federal Reserve Bank of New York for trade weighted value of the dollar = index
of weighted average exchange value of U.S. dollar against the United Kingdom Pound:
http://www.frbchi.org/econinfo/finance/finance.html.
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Fig. 2. Left: plot of the distance between same state for all 9 states in 5764 business days. Right:
plot of the distance between same state for all 9 states in first 300 business days.

year there is a hidden periodic and similarity distribution with each point representing
the distance of patterns of various forms. Between some combined pattern classes there
exist similar patterns such as between 5 to 10 and 15 to 22; between 32 to 35 and 42 to
44.

In Figure 3 the x-axis represents how many times the same distance is found be-
tween repeating patterns and the y-axis represents the distance between the first and
second occurences of each repeating pattern. In other words, we classify repeating pat-
terns based on a distance classification technique. Again we can look at the plot over a
selected portion to observe the distribution of distances in more detail. For example, in
the right of figure 3 the dataset consists of daily exchange rates for the first 50 business
days. It can be observed that the distribution of distances is a cubic curve distribution:� ) �

����� DMX � D�� , where � = a 0 �
+ b 0 + c and � , b � 0, a � 0.
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Fig. 3. Left: plot of the distance between same state for all states in 5764 business days. Right:
plot different pattern appear in different distances for first 50 business days.

In summary, some results for the structural base experiments are as follows:



– Structural distribution is a hidden periodic distribution with a periodic length func-
tion GH��
F� (there are techniques available to approximate to the form of this function
such as higher-order polynomial functions).

– There exist some partial periodic patterns based on a distance shifting.
– For all kinds of distance functions there exist a cubic curve: � ) �

� � � DMX � D�� , where
� = a 0 �

+ b 0 + c and � , b � 0, a � 0.
– there exists an approximate uniform distribution in state 3 and state 7.

4.2 On value-point pattern searching

We now illustrate our new method to construct predictive intervals on the value-point
sequence for searching periodic and similarity patterns. The linear regression of value-
point of  � against  ��� � explains about �&� � of the variability of the data sequence,
but it does not help us much in analysis and predicting future exchange rates. In the
light of our structural base experiments, we have found that the series

! �9)3 ��/�� ��� �
has non-trivial autocorrelation. The correlation between

! � and
! ��� � is � / � - �&� . Then

the observations can be modelled as a polynomial regression function, say
! �H)� � �  ���� � 5 79�� � �':Y� � 
 ) + ��-.�0/0/�/ ��1

and then the following new series

� �$
F� ) ! �$
F�M5 ! ��
 � +��R5 :Y� 5 
 ) + ��-A��/0/�/ ��1
may be obtained. We also consider the :.��
F� as an auto-regression ��� � - � model

:Y� 5 ) >C:Y� 5 � � 5���:Y� 5 � � 5���� 5
where > , � are constants dependent on sample dataset, and �<� 5 with a small variance
constant which can be used to improve the predictive equation. Our analysis is focused
on the series

! � which is presented in the left of Figure 4. It is scatter plot of lag 2
differences:

! � against
! ��� � .

We obtain the exchange rates model according to nonparametric quantile regression
theory: ! � ) � / � �&� ! ��� � 54: �
From the distribution of :<� , the :.�$
F� can be modelled as an ��� � - �

:Y�9)�� / - �.+ :Y��� � � � / �&� �Y:Y��� � 5����
with a small Var( � � )(about 0.00093) to improve the predictive equation.

For prediction of future exchange rates for the next 210 business days, we use the
simple equation

! � ) � / � �&� ! ��� � with an average error of 0.00135. In the right of
Figure 4 the actually observed series and predicted series are shown.

Some results for the value-point of experiments are as follows:

– There does not exist any full periodic pattern, but there exist some partial periodic
patterns based on a distance shifting.

– There exist some similarity patterns with a small distance shifting.
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Fig. 4. Left: Scatter plot of lag 2 differences: 2 � against 2 ��� � . Right:Plot of future exchange rates
only for 210 business days by using the simple equation 2 � = 0.488 2 ��� �

4.3 Using HMLPMs for pattern searching

Let
� KQ� �6K ��� P � 
�� N



be an irreducible homogeneous Markov chain on the state

space
� 
�+ � 
 -.� 

� � 
�� � 
�� � 

� � 
�� � 
�� � 

� 
 , with transition probability matrix (TPM) (or,

stochastic matrix) � :

� )

������������������

� / �A+�� � � / � - � � � / � � �&� � � � � � �
� � � � / �A+
�.+#� / �&� - ��� / �-�A+
� � � �
� � � � � � � / �.+�� � � / �&� � - � / �&� � -

� / � +C+
� � / � � � � � / � - � � � � � � � �
� � � + � � � � �
� � � � � � � / � � � / �

� / � � � ��� / � - � � � / � �&� � � � � � � �
� � � � / � � � � � � / �&� � + � � �
� � � � � � � / � �&� - � / �&�&� - � / � � �&�

������������������

We are interested in the future of distribution of TPM, GH��
F� = � � . According to the
Markov property, the TPM: �����#�
	��.� � ) � . This means that the TPM is non-recurrent
of a state 
�( to a state 
 � . In other words, we cannot use present exchange rate to predict
future exchange rate of some period after, but we are only able to predict near future
exchange rate.

Suppose that our prediction of future exchange rate of value-point sequence is a
nonnegative random process

��� �  M
 � N


, and satisfy 
 � ) � 
 ��� � 5�� � .

Suppose the distribution of sequence of transition probability matrix (TPM) under
time order � � � � � � ��� � � � �  F
 � N corresponding to the prediction value-point 
 � )! � � ! ��� � .

We have main combined-results on exchange rates as follows:

– We are only able to predict a short future period by using all present information.
– There does not exist any full periodic pattern but there exist some partial periodic

patterns.



– There exist some similarity patterns with a small distance shifting.

5 Related Work

According to pattern theory objectives in pattern searching can be classified into three
categories:

– Create a representation in terms of algebraic systems with probabilistic superstruc-
tures intended for the representation and understanding of patterns in nature and
science.

– Analyse the regular structures from the perspectives of mathematical theory.
– Apply regular structures to particular applications and implement the structures by

algorithms and code.

In recent years various studies have considered temporal datasets for searching dif-
ferent kinds of and/or different levels of patterns. These studies have only covered one
or two of the above categories. For example, many researchers use statistical techniques
such as Metric-distance based techniques, Model-based techniques, or a combination of
techniques (e.g, [14]) to search for different pattern problems such as in periodic pat-
terns searching (e.g., [9]) and similarity pattern searching (e.g., [6]).

Some studies have covered the above three categories for searching patterns in data
mining. For instance [2] presents a “shape definition language”, called P ��� , for re-
trieving objects based on shapes contained in the histories associated with these objects.
Also [12] present a logic algorithm for finding and representing hidden patterns. In [5],
authors described adaptive methods which are based on similar methods for finding
rules and discovering local patterns.

Our work is different from these works. First, we use a statistical language to per-
form all the search work. Second, we divide the data sequence or, data vector sequence,
into two groups: one is the structural base group and the other is the pure value based
group. In group one our techniques are similar to Agrawal’s work but we only con-
sider three state changes (i.e., up (value increases), down (value decreases) and same
(no change)) whereas Agarwal considers eight state changes (i.e., up (slightly increas-
ing value), Up (highly increasing value), down (slightly increasing value) and so on).
In this group, we also use distance measuring functions on structural based sequences
which is similar to [12]. In group two we apply statistical techniques such as local
polynomial modelling to deal with pure data which is similar to [5]. Finally, our work
combines significant information of two groups to get global information which is be-
hind the dataset.

6 Concluding Remarks

This paper has presented a new approach combining hidden Markov models and local
polynomial analysis to form new models of application of data mining. The rough deci-
sion for pattern discovery comes from the structural level that is a collection of certain
predefined similarity patterns. The clusters of similarity patterns are computed in this



level by the choice of certain distance measures. The point-value patterns are decided
in the second level and the similarity and periodicity of a DTS are extracted. In the
final level we combine structural and value-point pattern searching into the HMLPM
model to obtain a global pattern picture and understand the patterns in a dataset better.
Another approach to find similar and periodic patterns has been reported else where
[10, 11]. With these the model used is based on hidden periodicity analysis and plocal
polynormial analysis. However, we have found that using different models at different
levels produces better results.

The “Daily Foreign Exchanges Rates” data was used to find the similar patterns and
periodicities. The existence of similarity and partially periodic patterns are observed
even though there is no clear full periodicity in this analysis.

The method guarantees finding different patterns if they exist with structural and
valued probability distribution of a real-dataset. The results of preliminary experiments
are promising and we are currently applying the method to large realistic data sets such
as two kinds of diabetes dataset.
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