
Reproducibility Debt in Scientific Software
Zara Hassan

Australian National University
Canberra, Australia

zara.hassan@anu.edu.au

Christoph Treude
Singapore Management University

Singapore, Singapore
ctreude@smu.edu.sg

Graham Williams
Australian National University

Canberra, Australia
graham.williams@anu.edu.au

Michael Norrish
Australian National University

Canberra, Australia
michael.norrish@anu.edu.au

Alex Potanin
Australian National University

Canberra, Australia
alex.potanin@anu.edu.au

Abstract
Reproducibility Debt (RpD) refers to accumulated technical
and organisational issues in scientific software that hinder
the ability to reproduce research results. While reproducibil-
ity is essential to scientific integrity, RpD remains poorly
defined and under-addressed. This study introduces a formal
definition of RpD and investigates its causes, effects, and mit-
igation strategies using amixed-methods approach involving
a systematic literature review (214 papers), interviews (23
practitioners), and a global survey (59 participants). We iden-
tify seven categories of contributing issues, 75 causes, 110
effects, and 61 mitigation strategies. Findings are synthesised
into a cause-effect model and supported by taxonomies of
team roles and software types. This work provides concep-
tual clarity and practical tools to help researchers, develop-
ers, and institutions understand and manage RpD, ultimately
supporting more sustainable and reproducible scientific soft-
ware.

CCS Concepts: • Software and its engineering → Open
source model; Reusability; Traceability.

Keywords: Reproducibility, Technical Debt, Scientific Soft-
ware, Scientific Computing, Computational Reproducibility

ACM Reference Format:
Zara Hassan, Christoph Treude, GrahamWilliams, Michael Norrish,
and Alex Potanin. 2025. Reproducibility Debt in Scientific Software.
In Companion Proceedings of the 2025 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (SPLASH Companion ’25), October 12–18,
2025, Singapore, Singapore. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3758316.3765482

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
SPLASH Companion ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2141-0/25/10
https://doi.org/10.1145/3758316.3765482

1 Introduction
Technical Debt (TD) refers to short-term software decisions
that incur long-term costs, reducing maintainability and
quality [1]. While widely studied in traditional software en-
gineering, TD is also prevalent in scientific software, i.e, tools
developed by domain experts, often without formal software
engineering training [5]. This is particularly problematic as
scientific software today underpins critical research across
multiple disciplines.

A key challenge in scientific computing is reproducibility;
the ability to replicate and build upon prior results [3]. Yet,
over 70% of researchers report being unable to reproduce
published findings, contributing to what is now known as
the ‘reproducibility crisis’ [2]. In software-intensive research,
failures in reproducibility often stem from technical issues,
such as missing dependencies, undocumented workflows, or
non-deterministic behaviour. We conceptualize these tech-
nical barriers as Reproducibility Debt (RpD) [3], a type of
TD specific to scientific software that compromises repro-
ducibility. While the term has been briefly mentioned in
contexts like machine learning and data-intensive research,
there is currently no consolidated definition, classification,
or mitigation framework.

To address this gap, we conducted a mixed-methods study
consisting of a systematic literature review (SLR) of 214 pa-
pers [4], interviews with 23 scientific software practitioners,
and a global survey (InsightRpD) with 59 participants. We
identified 75 causes and 110 effects of RpD, and developed a
probabilistic cause-effect model to represent these relation-
ships. Our findings also consolidate mitigation strategies and
provide a shared vocabulary for understanding and manag-
ing RpD. This work contributes both conceptual clarity and
practical tools for improving the sustainability and reliability
of scientific software.

2 Methodology
The study explored RpD in scientific software using a mixed-
methods approach, guided by three research questions (RQs):
RQ1:What is RpD in scientific software and what are the main
categories of issues that contribute to it? ; RQ2:What are the
underlying causes and effects of RpD in scientific software? ;

50

https://orcid.org/0000-0003-3416-2991
https://orcid.org/0000-0002-6919-2149
https://orcid.org/0000-0001-7041-4127
https://orcid.org/0000-0003-1163-8467
https://orcid.org/0000-0002-4242-2725
https://doi.org/10.1145/3758316.3765482
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3758316.3765482


SPLASH Companion ’25, October 12–18, 2025, Singapore, Singapore Hassan, Z., Treude, C., Williams, G., Norrish, M., Potanin, A.

RQ3: What are the best practices for the management and
mitigation of RpD in scientific software projects?
To answer RQ1, we conducted our SLR [4] following es-

tablished guidelines. The search was performed across six
major digital libraries and Google Scholar using a carefully
constructed search string. Papers were selected through a
three-stage filtering process (metadata, abstract, and full-
text evaluation), and assessed using quality criteria. The
final pool included 206 primary studies, with an additional
8 papers added from a 2024 update. This review allowed us
to formally define RpD and construct a high-level taxonomy
of issues contributing to it, providing the foundation for the
rest of the study. The SLR also partially contributed to an-
swering RQ2 and RQ3, by highlighting 37 causes, 63 effects,
and mitigation strategies discussed in the literature.
To address RQ2 and RQ3 in greater depth, we conducted

semi-structured interviews with scientific software practi-
tioners from a large government research organisation. We
designed a 22-question interview guide informed by the SLR
and the InsighTD framework [6]. Participants represented
five key roles involved in scientific software development
across various stages, from data acquisition to analysis and
reporting. These interviews provided rich, practice-based
insights into how and why RpD occurs, and how teams man-
age or prevent it. Finally, to validate and extend our findings
at scale, we developed the InsightRpD survey tool, using a
design and validation process based on the InsighTDmethod-
ology [6]. The survey integrated insights from both the SLR
and interviews and was refined through expert reviews and
a pilot study. It was then disseminated via social media plat-
forms such as LinkedIn and X (formerly Twitter). The survey
responses helped to triangulate findings for RQ2 and RQ3,
providing broader perspectives on causes, effects, and mitiga-
tion strategies from a wider community of scientific software
practitioners.

3 Results
By answering RQ1, we are able to present the first formal
definition of RpD based on data in existing literature: “Re-
producibility Debt (RpD) is a type of technical debt primar-
ily impacting scientific software. It refers to the accumula-
tive issues and challenges that hinder the ability to repro-
duce scientific outcomes, stemming from challenges inherent
in scientific software code and data, including development,
organisation, dissemination, and documentation.”. From the
analysis of 214 primary studies, we categorised the con-
tributing issues into seven main categories: human-centric,
data-centric, documentation-centric, tools and infrastructure,
code-centric, legal, and versioning issues. Human and organ-
isational factors were the most frequently cited, followed
by issues related to data and documentation. This taxon-
omy offers a structured vocabulary to describe and compare
reproducibility challenges across scientific software projects.

By combining findings from the SLR, interviews, and sur-
vey, we identified 75 distinct causes and 110 effects of RpD.
These include socio-technical challenges such as lack of for-
mal training, insufficient documentation, and time or funding
constraints. Effects include reduced software reuse, inability
to validate results, and degraded research quality. We synthe-
sised these findings into probabilistic cause-effect diagrams
to visualise the relationships between frequently cited causes
and their downstream consequences, offering practitioners
a tool for understanding and mitigating RpD. Our analy-
sis identified 61 mitigation strategies (RQ3), most of which
stem from real-world practitioner experience. To support
more context-aware strategies, we introduce two support-
ing taxonomies: one outlining contributor roles in scientific
software teams, and another classifying real-world scientific
software types, both aimed at enabling more targeted tool
and policy design.

4 Relevance and Potential Impact
This study provides an evidence-based understanding of Re-
producibility Debt (RpD) in scientific software by identifying
its causes, effects, and mitigation strategies. The developed
taxonomies and cause-effect diagrams support targeted in-
terventions and informed decision-making, emphasising the
need for organisational support and cultural change. Future
work should validate these findings across broader contexts,
develop practical tools for monitoring and managing RpD,
and examine structural and policy influences.

References
[1] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Ro-

drigo O. Spínola, Forrest Shull, and Carolyn Seaman. 2016. Iden-
tification and Management of Technical Debt: A Systematic Map-
ping Study. Information and Software Technology 70 (2016), 100–121.
doi:10.1016/j.infsof.2015.10.008

[2] Monya Baker. 2016. 1,500 Scientists Lift the Lid on Reproducibility.
Nature 533, 7604 (2016), 452–454. doi:10.1038/533452a

[3] Zara Hassan, Christoph Treude, Michael Norrish, Graham Williams,
and Alex Potanin. 2024. Reproducibility Debt: Challenges and Future
Pathways. In Companion Proceedings of the 32nd ACM International Con-
ference on the Foundations of Software Engineering (Porto de Galinhas,
Brazil) (FSE 2024). Association for Computing Machinery, New York,
NY, USA, 462–466. doi:10.1145/3663529.3663778

[4] Zara Hassan, Christoph Treude, Michael Norrish, Graham Williams,
and Alex Potanin. 2025. Characterising reproducibility debt in scientific
software: A systematic literature review. Journal of Systems and Software
222 (2025), 112327. doi:10.1016/j.jss.2024.112327

[5] ArneN. Johanson andWilhelmHasselbring. 2018. Software Engineering
for Computational Science: Past, Present, Future. Computing in Science
& Engineering 20 (2018), 90–109. doi:10.1109/MCSE.2018.021651343

[6] Nicolli Rios, Rodrigo Spínola, Manoel Mendonça, and Carolyn Seaman.
2020. The practitioners’ point of view on the concept of technical
debt and its causes and consequences: a design for a global family of
industrial surveys and its first results from Brazil. Empirical Software
Engineering 25 (09 2020). doi:10.1007/s10664-020-09832-9

Received 2025-08-17; accepted 2025-08-24

51

https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1038/533452a
https://doi.org/10.1145/3663529.3663778
https://doi.org/10.1016/j.jss.2024.112327
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.1007/s10664-020-09832-9

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Relevance and Potential Impact
	References

